Featured Application: This study outlines a novel procedure for the Finite Element Modelling and Analysis of motocross knee braces under race conditions. The aim is to quantitatively evaluate the effectiveness of such stabilisers in reducing the risk and consequences of musculoskeletal injuries, considering the current lack of industrial standards and dedicated scientific research works. Musculoskeletal injuries often occur when performing motocross; almost half of the overall ligamentous injuries (42%) are knee ligaments injuries. Lesions can be greatly reduced with knee braces. Commercial knee braces are expected to oppose and limit unwanted and potentially harmful movements such as hyperextension and excessive rotation of the knee joint. However, this aspect has not been fully investigated from a biomechanical point of view. This would require proper Finite Element Modelling (FEM) and Analysis (FEA). However, to perform FEA and evaluate the efficacy of the brace simulating sportive conditions, numerical models need to be built. It requires a dedicated setup and several preprocessing steps, for which no industrial standard or widely accepted better practise is available as of today. Firstly, the brace and the lower limb are scanned using a 3D scanner. The geometry is reconstructed using reverse engineering techniques. These allow us to obtain a smooth, reliable 3D model starting from the points cloud acquired during scanning. A lower limb model was created using a mixed approach, combining MRI data and 3D scanning. Finally, a simulation of the impact condition after a jump using the developed model was carried out.

Analysis of a Motocross Knee Brace: From the Real Model to the Numerical Finite Element Model via 3D Scanning and Reverse Engineering / Lazzarini, L.; Civera, M.; Burgio, V.; Rodriguez Reinoso, M.; Antonaci, P.; Surace, C.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 13:8(2023), p. 5186. [10.3390/app13085186]

Analysis of a Motocross Knee Brace: From the Real Model to the Numerical Finite Element Model via 3D Scanning and Reverse Engineering

Civera M.;Burgio V.;Rodriguez Reinoso M.;Antonaci P.;Surace C.
2023

Abstract

Featured Application: This study outlines a novel procedure for the Finite Element Modelling and Analysis of motocross knee braces under race conditions. The aim is to quantitatively evaluate the effectiveness of such stabilisers in reducing the risk and consequences of musculoskeletal injuries, considering the current lack of industrial standards and dedicated scientific research works. Musculoskeletal injuries often occur when performing motocross; almost half of the overall ligamentous injuries (42%) are knee ligaments injuries. Lesions can be greatly reduced with knee braces. Commercial knee braces are expected to oppose and limit unwanted and potentially harmful movements such as hyperextension and excessive rotation of the knee joint. However, this aspect has not been fully investigated from a biomechanical point of view. This would require proper Finite Element Modelling (FEM) and Analysis (FEA). However, to perform FEA and evaluate the efficacy of the brace simulating sportive conditions, numerical models need to be built. It requires a dedicated setup and several preprocessing steps, for which no industrial standard or widely accepted better practise is available as of today. Firstly, the brace and the lower limb are scanned using a 3D scanner. The geometry is reconstructed using reverse engineering techniques. These allow us to obtain a smooth, reliable 3D model starting from the points cloud acquired during scanning. A lower limb model was created using a mixed approach, combining MRI data and 3D scanning. Finally, a simulation of the impact condition after a jump using the developed model was carried out.
2023
File in questo prodotto:
File Dimensione Formato  
applsci-13-05186-compressed.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 651.9 kB
Formato Adobe PDF
651.9 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2978486