Let A be the set of all integers of the form gcd(n, F-n), where n is a positive integer and F-n denotes the nth Fibonacci number. Leonetti and Sanna proved that A has natural density equal to zero, and asked for a more precise upper bound. We prove that#(A boolean AND [1, x] << x log log log x/log log xfor all sufficiently large x. In fact, we prove that a similar bound also holds when the sequence of Fibonacci numbers is replaced by a general nondegenerate Lucas sequence.

On the greatest common divisor of n and the nth Fibonacci number, II / Jha, Abhishek; Sanna, Carlo. - In: CANADIAN MATHEMATICAL BULLETIN. - ISSN 0008-4395. - STAMPA. - 66:2(2023), pp. 617-625. [10.4153/S0008439522000595]

On the greatest common divisor of n and the nth Fibonacci number, II

Sanna, Carlo
2023

Abstract

Let A be the set of all integers of the form gcd(n, F-n), where n is a positive integer and F-n denotes the nth Fibonacci number. Leonetti and Sanna proved that A has natural density equal to zero, and asked for a more precise upper bound. We prove that#(A boolean AND [1, x] << x log log log x/log log xfor all sufficiently large x. In fact, we prove that a similar bound also holds when the sequence of Fibonacci numbers is replaced by a general nondegenerate Lucas sequence.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri
On the greatest common divisor of n and the nth Fibonacci number II.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 508.07 kB
Formato Adobe PDF
508.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2978375