Let A be the set of all integers of the form gcd(n, F-n), where n is a positive integer and F-n denotes the nth Fibonacci number. Leonetti and Sanna proved that A has natural density equal to zero, and asked for a more precise upper bound. We prove that#(A boolean AND [1, x] << x log log log x/log log xfor all sufficiently large x. In fact, we prove that a similar bound also holds when the sequence of Fibonacci numbers is replaced by a general nondegenerate Lucas sequence.
On the greatest common divisor of n and the nth Fibonacci number, II / Jha, Abhishek; Sanna, Carlo. - In: CANADIAN MATHEMATICAL BULLETIN. - ISSN 0008-4395. - STAMPA. - 66:2(2023), pp. 617-625. [10.4153/S0008439522000595]
On the greatest common divisor of n and the nth Fibonacci number, II
Sanna, Carlo
2023
Abstract
Let A be the set of all integers of the form gcd(n, F-n), where n is a positive integer and F-n denotes the nth Fibonacci number. Leonetti and Sanna proved that A has natural density equal to zero, and asked for a more precise upper bound. We prove that#(A boolean AND [1, x] << x log log log x/log log xfor all sufficiently large x. In fact, we prove that a similar bound also holds when the sequence of Fibonacci numbers is replaced by a general nondegenerate Lucas sequence.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
On the greatest common divisor of n and the nth Fibonacci number II.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
508.07 kB
Formato
Adobe PDF
|
508.07 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2978375