During mission design, the concept of operations (ConOps) describes how the system operates during various life cycle phases to meet stakeholder expectations. ConOps is sometimes declined in a simple evaluation of the power consumption or data generation per mode. Different operational timelines are typically developed based on expert knowledge. This approach is robust when designing an automated system or a system with a low level of autonomy. However, when studying highly autonomous systems, designers may be interested in understanding how the system would react in an operational scenario when provided with knowledge about its actions and operational environment. These considerations can help verify and validate the proposed ConOps architecture, highlight shortcomings in both physical and functional design, and help better formulate detailed requirements. Hence, this study aims to provide a framework for the simulation and validation of operational scenarios for autonomous robotic space exploration systems during the preliminary design phases. This study extends current efforts in autonomy technology for planetary systems by focusing on testing their operability and assessing their performances in different scenarios early in the design process. The framework uses Model-Based Systems Engineering (MBSE) as the knowledge base for the studied system and its operations. It then leverages a Markov Decision Process (MDP) to simulate a set of system operations in a relevant scenario. It then outputs a feasible plan with the associated variation of a set of considered resources as step functions. This method was applied to simulate the operations of a small rover exploring an unknown environment to observe and sample a set of targets.

Simulating Operational Concepts for Autonomous Robotic Space Exploration Systems: A Framework for Early Design Validation / Rimani, Jasmine; Viola, Nicole; Lizy-Destrez, Stéphanie. - In: AEROSPACE. - ISSN 2226-4310. - ELETTRONICO. - 10:5(2023), p. 408. [10.3390/aerospace10050408]

Simulating Operational Concepts for Autonomous Robotic Space Exploration Systems: A Framework for Early Design Validation

Jasmine Rimani;Nicole Viola;
2023

Abstract

During mission design, the concept of operations (ConOps) describes how the system operates during various life cycle phases to meet stakeholder expectations. ConOps is sometimes declined in a simple evaluation of the power consumption or data generation per mode. Different operational timelines are typically developed based on expert knowledge. This approach is robust when designing an automated system or a system with a low level of autonomy. However, when studying highly autonomous systems, designers may be interested in understanding how the system would react in an operational scenario when provided with knowledge about its actions and operational environment. These considerations can help verify and validate the proposed ConOps architecture, highlight shortcomings in both physical and functional design, and help better formulate detailed requirements. Hence, this study aims to provide a framework for the simulation and validation of operational scenarios for autonomous robotic space exploration systems during the preliminary design phases. This study extends current efforts in autonomy technology for planetary systems by focusing on testing their operability and assessing their performances in different scenarios early in the design process. The framework uses Model-Based Systems Engineering (MBSE) as the knowledge base for the studied system and its operations. It then leverages a Markov Decision Process (MDP) to simulate a set of system operations in a relevant scenario. It then outputs a feasible plan with the associated variation of a set of considered resources as step functions. This method was applied to simulate the operations of a small rover exploring an unknown environment to observe and sample a set of targets.
2023
File in questo prodotto:
File Dimensione Formato  
aerospace-10-00408.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 2.46 MB
Formato Adobe PDF
2.46 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2978234