Li7La3Zr2O12 (LLZO) and related compounds are considered as promising candidates for future all-solid-state Li-ion battery applications. Still, the processing of those materials into thin membranes with the right stoichiometry and crystal structure is difficult and laborious. The sensitivity of the Li-ion conductive garnets against moisture and the associated Li+/H+ cation exchange makes their processing even more difficult. Formulation of suitable polymer/ceramic hybrid solid state electrolytes could be a prosperous way to reach the future large scale production of solid state Li-ion batteries. In fact, solvent mediated and/or slurry based wet-processing of the LLZO, e.g., tape-casting, could result in irreversible Li-ion loss of the pristine material due to Li+/H+ cation exchange. The concomitant structural changes and loss in functionality in terms of Li-ion conductivity are the results of the above process. Therefore, in the present work a systematic study on the chemical stability and structural retention of Al-substituted LLZO in different solvents is reported. It was found that Li+/H+ exchange in LLZO occurs upon solvent immersion, and its magnitude is dependent on the availability of -OH functional groups of the solvent molecules. As a result, a larger degree of Li+/H+ exchange causes higher increase of the lattice parameter of the LLZO, determined by synchrotron diffraction analyses. The expansion of the cubic unit cell was ascertained, when Li+ was replaced by H+ in the host lattice, by ab initio computational studies. The application of the most common solvent as dispersion medium, i.e., high purity water, causes the most significant Li+/H+ exchange and, therefore, structural change, while acetonitrile was proven to be the best suitable solvent for wet postprocessing of LLZO. Finally, computational calculations suggested that the Li+/H+ exchange could result in diminished ionic, i.e., mixed Li+-H+, conductivity due to the insertion of protons with lower mobility than that of Li-ions.

Structural and Computational Assessment of the Influence of Wet-Chemical Post-Processing of the Al-Substituted Cubic Li7La3Zr2O12 / Kun, R.; Langer, F.; Delle Piane, M.; Ohno, S.; Zeier, W. G.; Gockeln, M.; Colombi Ciacchi, L.; Busse, M.; Fekete, I.. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8244. - 10:43(2018), pp. 37188-37197. [10.1021/acsami.8b09789]

Structural and Computational Assessment of the Influence of Wet-Chemical Post-Processing of the Al-Substituted Cubic Li7La3Zr2O12

Delle Piane M.;
2018

Abstract

Li7La3Zr2O12 (LLZO) and related compounds are considered as promising candidates for future all-solid-state Li-ion battery applications. Still, the processing of those materials into thin membranes with the right stoichiometry and crystal structure is difficult and laborious. The sensitivity of the Li-ion conductive garnets against moisture and the associated Li+/H+ cation exchange makes their processing even more difficult. Formulation of suitable polymer/ceramic hybrid solid state electrolytes could be a prosperous way to reach the future large scale production of solid state Li-ion batteries. In fact, solvent mediated and/or slurry based wet-processing of the LLZO, e.g., tape-casting, could result in irreversible Li-ion loss of the pristine material due to Li+/H+ cation exchange. The concomitant structural changes and loss in functionality in terms of Li-ion conductivity are the results of the above process. Therefore, in the present work a systematic study on the chemical stability and structural retention of Al-substituted LLZO in different solvents is reported. It was found that Li+/H+ exchange in LLZO occurs upon solvent immersion, and its magnitude is dependent on the availability of -OH functional groups of the solvent molecules. As a result, a larger degree of Li+/H+ exchange causes higher increase of the lattice parameter of the LLZO, determined by synchrotron diffraction analyses. The expansion of the cubic unit cell was ascertained, when Li+ was replaced by H+ in the host lattice, by ab initio computational studies. The application of the most common solvent as dispersion medium, i.e., high purity water, causes the most significant Li+/H+ exchange and, therefore, structural change, while acetonitrile was proven to be the best suitable solvent for wet postprocessing of LLZO. Finally, computational calculations suggested that the Li+/H+ exchange could result in diminished ionic, i.e., mixed Li+-H+, conductivity due to the insertion of protons with lower mobility than that of Li-ions.
File in questo prodotto:
File Dimensione Formato  
acsami.8b09789.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2977622