Advanced antimicrobial biomaterials for wound healing applications are an active field of research for their potential in addressing severe and infected wounds and overcoming the threat of antimicrobial resistance. Beta-glucans have been used in the preparation of these materials for their bioactive properties, but very little progress has been made so far in producing biomedical devices entirely made of beta-glucans and in their integration with effective antimicrobial agents. In this work, a simple and eco-friendly method is used to produce flexible beta-glucan/nanostructured zinc oxide films, using glucans derived from the yeast Saccharomyces cerevisiae. The properties of the films are characterized through scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared and UV–visible spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and water absorption tests. Finally, the antibacterial properties of the nanostructured zinc oxide and of the composite films are assessed against Staphylococcus epidermidis and Escherichia coli, showing a marked effectiveness against the former. Overall, this study demonstrates how a novel bionanocomposite can be obtained towards the development of advanced wound healing devices.
Antibacterial β-Glucan/Zinc Oxide Nanocomposite Films for Wound Healing / Pino, P.; Pellegrino, G.; Ronchetti, S.; Mollea, C.; Bosco, F.; Onida, B.. - In: BIONANOSCIENCE. - ISSN 2191-1649. - 13:1(2023), pp. 426-435. [10.1007/s12668-023-01079-0]
Antibacterial β-Glucan/Zinc Oxide Nanocomposite Films for Wound Healing
Pino P.;Pellegrino G.;Ronchetti S.;Mollea C.;Bosco F.;Onida B.
2023
Abstract
Advanced antimicrobial biomaterials for wound healing applications are an active field of research for their potential in addressing severe and infected wounds and overcoming the threat of antimicrobial resistance. Beta-glucans have been used in the preparation of these materials for their bioactive properties, but very little progress has been made so far in producing biomedical devices entirely made of beta-glucans and in their integration with effective antimicrobial agents. In this work, a simple and eco-friendly method is used to produce flexible beta-glucan/nanostructured zinc oxide films, using glucans derived from the yeast Saccharomyces cerevisiae. The properties of the films are characterized through scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared and UV–visible spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and water absorption tests. Finally, the antibacterial properties of the nanostructured zinc oxide and of the composite films are assessed against Staphylococcus epidermidis and Escherichia coli, showing a marked effectiveness against the former. Overall, this study demonstrates how a novel bionanocomposite can be obtained towards the development of advanced wound healing devices.File | Dimensione | Formato | |
---|---|---|---|
s12668-023-01079-0.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2977443