The exploitation of plant-based monomers for additive manufacturing is a very promising approach to reduce the usage of petroleum-based plastics. In vat photopolymerization, acrylate epoxidized soybean oil (AESO) stands out as a versatile photocurable resin that can be modified and combined with other materials for multiple applications. In this work, different ratios of AESO were combined with isobornyl methacrylate (IBOMA), to develop a resin that exhibits similar mechanical properties to standard fossil-based resins. The photopolymerization reaction and conversion rate was monitored using FT-IR analysis, which showed conversions above 80%. Furthermore, curing tests revealed that the biobased resin needed less energy to cure when compared to commercial resins. The parts fabricated using the biobased resin also demonstrated enhanced tensile strength, tunable elongation at break and swelling resistance, which were comparable to standard fossil-based resins. This work demonstrates the potential of the proposed systems as a valuable alternative to traditional resins, paving the way for the development of high-performance materials for stereolithographic applications.

Preparation and characterization of a fully biobased resin system for 3d‑printing, suitable for replacing fossil‑based acrylates / Palucci Rosa, Raphael; Rosace, Giuseppe; Arrigo, Rossella; Malucelli, Giulio. - In: JOURNAL OF POLYMER RESEARCH. - ISSN 1022-9760. - ELETTRONICO. - 30:139(2023). [10.1007/s10965-023-03523-x]

Preparation and characterization of a fully biobased resin system for 3d‑printing, suitable for replacing fossil‑based acrylates

Rossella Arrigo;Giulio Malucelli
2023

Abstract

The exploitation of plant-based monomers for additive manufacturing is a very promising approach to reduce the usage of petroleum-based plastics. In vat photopolymerization, acrylate epoxidized soybean oil (AESO) stands out as a versatile photocurable resin that can be modified and combined with other materials for multiple applications. In this work, different ratios of AESO were combined with isobornyl methacrylate (IBOMA), to develop a resin that exhibits similar mechanical properties to standard fossil-based resins. The photopolymerization reaction and conversion rate was monitored using FT-IR analysis, which showed conversions above 80%. Furthermore, curing tests revealed that the biobased resin needed less energy to cure when compared to commercial resins. The parts fabricated using the biobased resin also demonstrated enhanced tensile strength, tunable elongation at break and swelling resistance, which were comparable to standard fossil-based resins. This work demonstrates the potential of the proposed systems as a valuable alternative to traditional resins, paving the way for the development of high-performance materials for stereolithographic applications.
File in questo prodotto:
File Dimensione Formato  
Preparation and characterization of a fully biobased resin system for 3d‑printing, suitable for replacing fossil‑based acrylates.pdf

non disponibili

Descrizione: post-print versione editoriale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2977228