Sustainability has encouraged studies focusing on lowering the aeroacoustic impact of new aerodynamically optimized mechanical systems for several applications in wind-energy, aviation, automotive and urban air-mobility. The deployment of effective noise-reduction strategies starts with a deep understanding of the underlying mechanisms of noise generation. To elucidate the physics behind the onset of aerodynamic sources of sound, experimental techniques used for aerodynamic purposes have been combined with acoustic measurements. In the last decades, new experimental post-processing techniques have additionally been developed, by leveraging aeroacoustic analogies in a new multi-disciplinary framework. New approaches have been proposed with the intent of translating near-field velocity and pressure information into sound. The current review describes how such breakthroughs have been achieved, briefly starting from a historical overview, to quickly bridge to the measurement techniques and the facilities employed by the scientific community. Being the measurement principles already reported in the literature, this review only focuses on the most relevant studies trying to relate the near-field information to the perceived sound in the far-field. Aspects related to the uncertainty of the measurement techniques will be thus very briefly discussed, together with their relation to the background noise of the testing facilities, including acoustic reflections/refractions, and issues related to the instrumentation.

Measurement techniques for aeroacoustics: from aerodynamic comparisons to aeroacoustic assimilations / Ragni, Daniele; Avallone, Francesco; Casalino, Damiano. - In: MEASUREMENT SCIENCE & TECHNOLOGY. - ISSN 1361-6501. - 33:6(2022), p. 062001. [10.1088/1361-6501/ac547d]

Measurement techniques for aeroacoustics: from aerodynamic comparisons to aeroacoustic assimilations

Francesco Avallone;Damiano Casalino
2022

Abstract

Sustainability has encouraged studies focusing on lowering the aeroacoustic impact of new aerodynamically optimized mechanical systems for several applications in wind-energy, aviation, automotive and urban air-mobility. The deployment of effective noise-reduction strategies starts with a deep understanding of the underlying mechanisms of noise generation. To elucidate the physics behind the onset of aerodynamic sources of sound, experimental techniques used for aerodynamic purposes have been combined with acoustic measurements. In the last decades, new experimental post-processing techniques have additionally been developed, by leveraging aeroacoustic analogies in a new multi-disciplinary framework. New approaches have been proposed with the intent of translating near-field velocity and pressure information into sound. The current review describes how such breakthroughs have been achieved, briefly starting from a historical overview, to quickly bridge to the measurement techniques and the facilities employed by the scientific community. Being the measurement principles already reported in the literature, this review only focuses on the most relevant studies trying to relate the near-field information to the perceived sound in the far-field. Aspects related to the uncertainty of the measurement techniques will be thus very briefly discussed, together with their relation to the background noise of the testing facilities, including acoustic reflections/refractions, and issues related to the instrumentation.
File in questo prodotto:
File Dimensione Formato  
Ragni_2022_Meas._Sci._Technol._33_062001_compressed (1).pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2976889