A physical description of the flow mechanisms that govern the distribution of the wall-pressure fluctuations over the surface of a serrated trailing edge is proposed. Three main mechanisms that define the variation of turbulent pressure fluctuations across the serrated edge are discussed and semi-empirical models are formulated accordingly. It is shown that the intensity of the wall-pressure fluctuations increases at the tips under the effect of an increased convective velocity as a result of sidewise momentum diffusion. Furthermore, the change of impedance across the edge causes a local reduction of the pressure fluctuations in the vicinity of the trailing edge. Finally, aerodynamic loading over the serrations due to the non-symmetric flow created at different angles of attack establishes secondary flow patterns that induce higher wall-pressure fluctuations over the serration edges. The latter effect is present only for serrations under high aerodynamic loading, while the former ones are observed under any conditions. Semi-empirical models are formulated for predicting the variation of the wall-pressure fluctuations over the serration surface based on the three physical mechanisms described. These models are calibrated and compared against experiments conducted on a symmetric airfoil model at high Reynolds numbers.
A physics-based description and modelling of the wall-pressure fluctuations on a serrated trailing edge / Tercio Lima Pereira, Lourencoo; Avallone, Francesco; Ragni, Daniele; Scarano, Fulvio. - In: JOURNAL OF FLUID MECHANICS. - ISSN 1469-7645. - 938:A28(2022). [10.1017/jfm.2022.173]
A physics-based description and modelling of the wall-pressure fluctuations on a serrated trailing edge
Francesco Avallone;
2022
Abstract
A physical description of the flow mechanisms that govern the distribution of the wall-pressure fluctuations over the surface of a serrated trailing edge is proposed. Three main mechanisms that define the variation of turbulent pressure fluctuations across the serrated edge are discussed and semi-empirical models are formulated accordingly. It is shown that the intensity of the wall-pressure fluctuations increases at the tips under the effect of an increased convective velocity as a result of sidewise momentum diffusion. Furthermore, the change of impedance across the edge causes a local reduction of the pressure fluctuations in the vicinity of the trailing edge. Finally, aerodynamic loading over the serrations due to the non-symmetric flow created at different angles of attack establishes secondary flow patterns that induce higher wall-pressure fluctuations over the serration edges. The latter effect is present only for serrations under high aerodynamic loading, while the former ones are observed under any conditions. Semi-empirical models are formulated for predicting the variation of the wall-pressure fluctuations over the serration surface based on the three physical mechanisms described. These models are calibrated and compared against experiments conducted on a symmetric airfoil model at high Reynolds numbers.File | Dimensione | Formato | |
---|---|---|---|
a-physics-based-description-and-modelling-of-the-wall-pressure-fluctuations-on-a-serrated-trailing-edge.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.75 MB
Formato
Adobe PDF
|
2.75 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2976886