This study focuses on the development of theranostic, dual drug-loaded nanocarriers to propose a proof-of-principle therapeutic approach in the treatment of pancreatic ductal adenocarcinoma (PDAC). The nanoconstructs consist of a core of zinc oxide nanocrystals doped with gadolinium, useful as a potential contrast agent in magnetic resonance imaging applications. After functionalizing their surface with amino-propyl groups, the physical adsorption of two hydrophobic drugs is performed: Vismodegib and Sorafenib. Their synergistic use might improve PDAC treatment and stroma depletion when co-delivered in the tumor microenvironment for future in vivo applications. To enhance the nanoconstructs’ biostability, the ensemble is coated by a lipid bilayer and a tumor targeting peptide is incorporated on the outer shell surface. As a first proof of concept, the resulting nanoconstructs are tested against two pancreatic cancer cell lines, showing a modest increase in treatment efficacy compared to the free drug counterparts and proving to spare healthy pancreatic cells. In a second testing set, the dual-drug loaded nanoconstructs are tested on both cell lines previously sensitized to a firstline chemotherapeutic drug, Gemcitabine, showing an improved treatment response. From these preliminary results, the nanotheranostic platforms might constitute a good starting point for future PDAC therapy and diagnosis studies.
Dual Drug Loaded Nanotheranostic Platforms as a Novel Synergistic Approach to Improve Pancreatic Cancer Treatment / Barui, Sugata; Conte, Marzia; Percivalle, NICOLO' MARIA; María García Montero, Rocío; Racca, Luisa; Allione, Marco; Cauda, VALENTINA ALICE. - In: PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION. - ISSN 1521-4117. - ELETTRONICO. - (2023), p. 2200138. [10.1002/ppsc.202200138]
Dual Drug Loaded Nanotheranostic Platforms as a Novel Synergistic Approach to Improve Pancreatic Cancer Treatment
Sugata Barui;Marzia Conte;Nicolo Maria Percivalle;Luisa Racca;Marco Allione;Valentina Cauda
2023
Abstract
This study focuses on the development of theranostic, dual drug-loaded nanocarriers to propose a proof-of-principle therapeutic approach in the treatment of pancreatic ductal adenocarcinoma (PDAC). The nanoconstructs consist of a core of zinc oxide nanocrystals doped with gadolinium, useful as a potential contrast agent in magnetic resonance imaging applications. After functionalizing their surface with amino-propyl groups, the physical adsorption of two hydrophobic drugs is performed: Vismodegib and Sorafenib. Their synergistic use might improve PDAC treatment and stroma depletion when co-delivered in the tumor microenvironment for future in vivo applications. To enhance the nanoconstructs’ biostability, the ensemble is coated by a lipid bilayer and a tumor targeting peptide is incorporated on the outer shell surface. As a first proof of concept, the resulting nanoconstructs are tested against two pancreatic cancer cell lines, showing a modest increase in treatment efficacy compared to the free drug counterparts and proving to spare healthy pancreatic cells. In a second testing set, the dual-drug loaded nanoconstructs are tested on both cell lines previously sensitized to a firstline chemotherapeutic drug, Gemcitabine, showing an improved treatment response. From these preliminary results, the nanotheranostic platforms might constitute a good starting point for future PDAC therapy and diagnosis studies.File | Dimensione | Formato | |
---|---|---|---|
137_SBarui_Part Part Syst Charact_2023.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
4.88 MB
Formato
Adobe PDF
|
4.88 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2976686