Pressure-flow travelling waves are a key topic for understanding arterial haemodynamics. However, wave transmission and reflection processes induced by body posture changes have not been thoroughly explored yet. Current in vivo research has shown that the amount of wave reflection detected at a central level (ascending aorta, aortic arch) decreases during tilting to the upright position, despite the widely proved stiffening of the cardiovascular system. It is known that the arterial system is optimized when in the supine position, i.e. propagation of direct waves is enabled and reflected waves are trapped, protecting the heart; however, it is not known whether this is preserved with postural changes. To shed light on these aspects, we propose a multi-scale modelling approach to inquire into posture-induced arterial wave dynamics elicited by simulated head-up tilting. In spite of remarkable adaptation of the human vasculature following posture changes, our analysis shows that, upon tilting from supine to upright: (i) vessel lumens at arterial bifurcations remain well matched in the forward direction, (ii) wave reflection at central level is reduced due to the backward propagation of weakened pressure waves produced by cerebral autoregulation, and (iii) backward wave trapping is preserved.

Arterial wave dynamics preservation upon orthostatic stress: a modelling perspective / Fois, Matteo; Ridolfi, Luca; Scarsoglio, Stefania. - In: ROYAL SOCIETY OPEN SCIENCE. - ISSN 2054-5703. - ELETTRONICO. - 10:3(2023). [10.1098/rsos.221257]

Arterial wave dynamics preservation upon orthostatic stress: a modelling perspective

Matteo Fois;Luca Ridolfi;Stefania Scarsoglio
2023

Abstract

Pressure-flow travelling waves are a key topic for understanding arterial haemodynamics. However, wave transmission and reflection processes induced by body posture changes have not been thoroughly explored yet. Current in vivo research has shown that the amount of wave reflection detected at a central level (ascending aorta, aortic arch) decreases during tilting to the upright position, despite the widely proved stiffening of the cardiovascular system. It is known that the arterial system is optimized when in the supine position, i.e. propagation of direct waves is enabled and reflected waves are trapped, protecting the heart; however, it is not known whether this is preserved with postural changes. To shed light on these aspects, we propose a multi-scale modelling approach to inquire into posture-induced arterial wave dynamics elicited by simulated head-up tilting. In spite of remarkable adaptation of the human vasculature following posture changes, our analysis shows that, upon tilting from supine to upright: (i) vessel lumens at arterial bifurcations remain well matched in the forward direction, (ii) wave reflection at central level is reduced due to the backward propagation of weakened pressure waves produced by cerebral autoregulation, and (iii) backward wave trapping is preserved.
File in questo prodotto:
File Dimensione Formato  
Fois et al 2023 - Arterial wave dynamics preservation upon orthostatic stress a modelling perspective.pdf

accesso aperto

Descrizione: Main Manuscript
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri
Fois et al 2023 - SM Arterial wave dynamics preservation upon orthostatic stress a modelling perspective.pdf

accesso aperto

Descrizione: Supplementary Material
Tipologia: Altro materiale allegato
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2976492