A dispersion of fine particles in the air is needed for a dust explosion to occur since an explosion is the fast combustion of particles in the air. When particles are poorly dispersed, agglomerated, or their concentration is low, the combustion velocity decreases, and deflagration would not occur. The combustion rate is strictly related to dust concentration. Therefore, the maximum explosion pressure rise occurs at dust concentration close to stoichiometric. Conversely, Minimum Explosion Concentration (MEC) is the lower limit at which self-sustained combustion and a pressure rise are possible. Dust explosion tests are designed to reproduce the dispersion and generation of dust clouds in industrial ambiences by using dispersion devices activated by pressurised air pulses. The resulting dust cloud, which has a marked transient character, is considered representative of real clouds by current standards. Over time, several studies have been carried out to optimise these devices (e.g. to reduce the inhomogeneity of the cloud in the 20 L sphere). The Minimum Ignition Energy (MIE) of dust is measured using the Mike3 modified Hartmann tube, where the ignition attempt is made 60–180 ms after dust dispersion regardless of dust characteristics. This work investigates the dust clouds’ actual behaviour inside the modified Hartmann tube before ignition using high-velocity video movies and a new image post-treatment method called Image Subtraction Method (ISM). Movies are recorded with high-speed cameras at a framerate of 2000 fps and elaborated with an on-purpose developed LabVIEW® code. Concentration (mass per volume) and dispersion pressure are varied to evaluate their effect on dust clouds. Maise starch, iron powder and silica powder are chosen to investigate the effect of particle density and size on the cloud structure and turbulence. This approach will help to investigate the structure of the dust cloud, the shape and size of the particle lumps and the change in dust concentration over time. In addition, information on the actual concentration and cloud turbulence at the ignition location and delay time were obtained, which may help identify the local turbulence scale and widen the characterisation of the cloud generated in the Hartmann tube.

Study of dust cloud behaviour in the modified Hartmann tube using the image subtraction method (ISM) / Danzi, E.; Dufaud, O.; Franchini, F.; Pietraccini, M.; Marmo, L.. - In: JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES. - ISSN 0950-4230. - STAMPA. - 82:(2023), p. 104997. [10.1016/j.jlp.2023.104997]

Study of dust cloud behaviour in the modified Hartmann tube using the image subtraction method (ISM)

Danzi E.;Franchini F.;Pietraccini M.;Marmo L.
2023

Abstract

A dispersion of fine particles in the air is needed for a dust explosion to occur since an explosion is the fast combustion of particles in the air. When particles are poorly dispersed, agglomerated, or their concentration is low, the combustion velocity decreases, and deflagration would not occur. The combustion rate is strictly related to dust concentration. Therefore, the maximum explosion pressure rise occurs at dust concentration close to stoichiometric. Conversely, Minimum Explosion Concentration (MEC) is the lower limit at which self-sustained combustion and a pressure rise are possible. Dust explosion tests are designed to reproduce the dispersion and generation of dust clouds in industrial ambiences by using dispersion devices activated by pressurised air pulses. The resulting dust cloud, which has a marked transient character, is considered representative of real clouds by current standards. Over time, several studies have been carried out to optimise these devices (e.g. to reduce the inhomogeneity of the cloud in the 20 L sphere). The Minimum Ignition Energy (MIE) of dust is measured using the Mike3 modified Hartmann tube, where the ignition attempt is made 60–180 ms after dust dispersion regardless of dust characteristics. This work investigates the dust clouds’ actual behaviour inside the modified Hartmann tube before ignition using high-velocity video movies and a new image post-treatment method called Image Subtraction Method (ISM). Movies are recorded with high-speed cameras at a framerate of 2000 fps and elaborated with an on-purpose developed LabVIEW® code. Concentration (mass per volume) and dispersion pressure are varied to evaluate their effect on dust clouds. Maise starch, iron powder and silica powder are chosen to investigate the effect of particle density and size on the cloud structure and turbulence. This approach will help to investigate the structure of the dust cloud, the shape and size of the particle lumps and the change in dust concentration over time. In addition, information on the actual concentration and cloud turbulence at the ignition location and delay time were obtained, which may help identify the local turbulence scale and widen the characterisation of the cloud generated in the Hartmann tube.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2976345