Complex installations that involve dangerous substances, such as oil and gas or nuclear plants, must mandatorily undergo a quantitative risk assessment (QRA) according to current regulations. This requires, among others, the simulation of hundreds of accidental scenarios, which are typically carried out using empirical tools due to their fast response. Nonetheless, since they are not able to guarantee sufficient accuracy, especially when complex geometries are involved, computational fluid dynamics (CFD) tools are increasingly used. In this work, a high-pressure accidental release of a sour gas (CH4-H2S) in an offshore platform under several wind conditions is considered. A methodology used to perform a wind sensitivity analysis via CFD, while avoiding high computational costs, is presented. The wind intensity impact on some risk-related figures of merit, such as the high lethality or irreversible injuries areas, is discussed in relation to the flammability and toxicity limits of the released mixture. The results show that even a very low amount of H2S in the released mixture can strongly affect the threat zones. A progressive decrease in the toxic and flammable volumes in the platform is observed as the wind velocity increases; nonetheless, a saturation effect appears in high wind speed scenarios.

Wind Impact Assessment of a Sour Gas Release in an Offshore Platform / Moscatello, A.; Ledda, G.; Uggenti, A. C.; Gerboni, R.; Carpignano, A.. - In: SAFETY. - ISSN 2313-576X. - 8:4(2022), pp. 80-100. [10.3390/safety8040080]

Wind Impact Assessment of a Sour Gas Release in an Offshore Platform

Moscatello A.;Ledda G.;Uggenti A. C.;Gerboni R.;Carpignano A.
2022

Abstract

Complex installations that involve dangerous substances, such as oil and gas or nuclear plants, must mandatorily undergo a quantitative risk assessment (QRA) according to current regulations. This requires, among others, the simulation of hundreds of accidental scenarios, which are typically carried out using empirical tools due to their fast response. Nonetheless, since they are not able to guarantee sufficient accuracy, especially when complex geometries are involved, computational fluid dynamics (CFD) tools are increasingly used. In this work, a high-pressure accidental release of a sour gas (CH4-H2S) in an offshore platform under several wind conditions is considered. A methodology used to perform a wind sensitivity analysis via CFD, while avoiding high computational costs, is presented. The wind intensity impact on some risk-related figures of merit, such as the high lethality or irreversible injuries areas, is discussed in relation to the flammability and toxicity limits of the released mixture. The results show that even a very low amount of H2S in the released mixture can strongly affect the threat zones. A progressive decrease in the toxic and flammable volumes in the platform is observed as the wind velocity increases; nonetheless, a saturation effect appears in high wind speed scenarios.
2022
File in questo prodotto:
File Dimensione Formato  
safety-08-00080.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 9.05 MB
Formato Adobe PDF
9.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2976010