Knowledge on the composition and characteristics of dissolved organic matter (DOM) in complex shale gas wastewater (SGW) is critical to evaluate environmental risks and to determine effective management strategies. Herein, five SGW samples from four key shale gas blocks in the Sichuan Basin, China, were comprehensively characterized. Specifically, FT-ICR MS was employed to provide insights into the sources, composition, and characteristics of SGW DOM. Organic matter was characterized by low average molecular weight, high saturation degree, and low aromaticity. Notably, the absence of correlations between molecular-level parameters and spectral indexes might be attributed to the high complexity and variability of SGW. The unique distribution depicted in van Krevelen diagrams suggested various sources of DOM in SGW, such as microbially derived organics in shales and biochemical transformations. Moreover, linear alkyl benzene sulfonates, as well as associated biodegraded metabolites and coproducts, were identified in SGW, implying the distinct anthropogenic imprints and abundant microbial activities. Furthermore, high DOC removal rates (31.42-79.23 %) were achieved by biological treatment, fully supporting the inherently labile nature of SGW and the feasibility of biodegradation for SGW management. Therefore, we conclude that DOM in SGW is a complex but mostly labile mixture reflecting both autochthonous and anthropogenic sources.
Dissolved organic matter in complex shale gas wastewater analyzed with ESI FT-ICR MS: Typical characteristics and potential of biological treatment / Ji, Xuanyu; Tiraferri, Alberto; Zhang, Xiaofei; Liu, Peng; Gan, Zhiwei; Crittenden, John C; Ma, Jun; Liu, Baicang. - In: JOURNAL OF HAZARDOUS MATERIALS. - ISSN 1873-3336. - 447:(2023), p. 130823. [10.1016/j.jhazmat.2023.130823]
Dissolved organic matter in complex shale gas wastewater analyzed with ESI FT-ICR MS: Typical characteristics and potential of biological treatment
Tiraferri, Alberto;
2023
Abstract
Knowledge on the composition and characteristics of dissolved organic matter (DOM) in complex shale gas wastewater (SGW) is critical to evaluate environmental risks and to determine effective management strategies. Herein, five SGW samples from four key shale gas blocks in the Sichuan Basin, China, were comprehensively characterized. Specifically, FT-ICR MS was employed to provide insights into the sources, composition, and characteristics of SGW DOM. Organic matter was characterized by low average molecular weight, high saturation degree, and low aromaticity. Notably, the absence of correlations between molecular-level parameters and spectral indexes might be attributed to the high complexity and variability of SGW. The unique distribution depicted in van Krevelen diagrams suggested various sources of DOM in SGW, such as microbially derived organics in shales and biochemical transformations. Moreover, linear alkyl benzene sulfonates, as well as associated biodegraded metabolites and coproducts, were identified in SGW, implying the distinct anthropogenic imprints and abundant microbial activities. Furthermore, high DOC removal rates (31.42-79.23 %) were achieved by biological treatment, fully supporting the inherently labile nature of SGW and the feasibility of biodegradation for SGW management. Therefore, we conclude that DOM in SGW is a complex but mostly labile mixture reflecting both autochthonous and anthropogenic sources.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S030438942300105X-main.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
7.66 MB
Formato
Adobe PDF
|
7.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pre-print.pdf
non disponibili
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
AAM 11583-2975888.pdf
embargo fino al 18/01/2025
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2975888