We define non--ordinary instanton bundles on Fano threefolds $X$ extending the notion of (ordinary) instanton bundles introduced in \cite{C--C--G--M}. We determine a lower bound for the quantum number of a non--ordinary instanton bundle, i.e. the degree of its second Chern class, showing the existence of such bundles for each admissible value of the quantum number when $i_X\ge 2$ or $i_X=1$, $\rk \Pic(X)=1$ and $X$ is ordinary. In these cases we deal with the component inside the moduli spaces of simple bundles containing the vector bundles we construct and we study their restriction to lines. Finally we give a monadic description of non--ordinary instanton bundles on $\p3$ and the smooth quadric studying their loci of jumping lines, when of the expected codimension.
Even and odd instanton bundles on Fano threefolds / Antonelli, Vincenzo; Casnati, Gianfranco; Genc, Ozhan. - In: THE ASIAN JOURNAL OF MATHEMATICS. - ISSN 1093-6106. - STAMPA. - 26:1(2022), pp. 081-118. [10.4310/AJM.2022.V26.N1.A4]
Even and odd instanton bundles on Fano threefolds
Vincenzo Antonelli;Gianfranco Casnati;Ozhan Genc
2022
Abstract
We define non--ordinary instanton bundles on Fano threefolds $X$ extending the notion of (ordinary) instanton bundles introduced in \cite{C--C--G--M}. We determine a lower bound for the quantum number of a non--ordinary instanton bundle, i.e. the degree of its second Chern class, showing the existence of such bundles for each admissible value of the quantum number when $i_X\ge 2$ or $i_X=1$, $\rk \Pic(X)=1$ and $X$ is ordinary. In these cases we deal with the component inside the moduli spaces of simple bundles containing the vector bundles we construct and we study their restriction to lines. Finally we give a monadic description of non--ordinary instanton bundles on $\p3$ and the smooth quadric studying their loci of jumping lines, when of the expected codimension.File | Dimensione | Formato | |
---|---|---|---|
AJM-26-1-04-1.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
534.21 kB
Formato
Adobe PDF
|
534.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2105.00632.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
461.65 kB
Formato
Adobe PDF
|
461.65 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2975418