The aim of this study was to improve the dispersibility of graphite nanoplatelets (GNP) in films based on poly(ε-caprolactone) (PCL). To this end, a star-shaped PCL with furoate-like end groups (PCL-Fur), potentially capable of interacting/reacting with the surface of the graphene layers through Diels-Alder reactions, was synthesized by enzymatic catalysis. PCL-Fur was applied for film development by blending it with a commercial high molecular weight PCL (PCL-L) and GNP. The reactivity of GNP with respect to furoate groups was demonstrated by studying the thermal behavior of the GNP/methyl 2-furoate system, while the dispersibility of graphite in the solution containing PCL-Fur was studied by UV–Vis measurements. GNP proved to be well dispersed and adhered to the polymer matrix in the PCL-L/PCL-Fur/GNP composite films prepared by casting, in contrast to the films based on the neat PCL-L. This fine GNP dispersion resulted in films characterized by high electrical conductivity.
Star-shaped furoate-PCL: An effective compound for the development of graphite nanoplatelets-based films / Damonte, Giacomo; Cantamessa, Francesco; Fina, Alberto; Monticelli, Orietta.. - In: REACTIVE & FUNCTIONAL POLYMERS. - ISSN 1381-5148. - 184:105515(2023), pp. 1-8. [10.1016/j.reactfunctpolym.2023.105515]
Star-shaped furoate-PCL: An effective compound for the development of graphite nanoplatelets-based films
Cantamessa, Francesco;Fina, Alberto;
2023
Abstract
The aim of this study was to improve the dispersibility of graphite nanoplatelets (GNP) in films based on poly(ε-caprolactone) (PCL). To this end, a star-shaped PCL with furoate-like end groups (PCL-Fur), potentially capable of interacting/reacting with the surface of the graphene layers through Diels-Alder reactions, was synthesized by enzymatic catalysis. PCL-Fur was applied for film development by blending it with a commercial high molecular weight PCL (PCL-L) and GNP. The reactivity of GNP with respect to furoate groups was demonstrated by studying the thermal behavior of the GNP/methyl 2-furoate system, while the dispersibility of graphite in the solution containing PCL-Fur was studied by UV–Vis measurements. GNP proved to be well dispersed and adhered to the polymer matrix in the PCL-L/PCL-Fur/GNP composite films prepared by casting, in contrast to the films based on the neat PCL-L. This fine GNP dispersion resulted in films characterized by high electrical conductivity.File | Dimensione | Formato | |
---|---|---|---|
Star-shaped furoate-PCL_ An effective compound for the development of graphite nanoplatelets-based films.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.59 MB
Formato
Adobe PDF
|
3.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Star-Shaped Furoate-PCL.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
683.49 kB
Formato
Adobe PDF
|
683.49 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2975264