Advances in machine learning have widened the range of its applications in many fields. In particular, deep learning has attracted much interest for its ability to provide solutions where the derivation of a rigorous mathematical model of the problem is troublesome. Our interest was drawn to the application of deep learning for channel state information feedback reporting, a crucial problem in frequency division duplexing (FDD) 5G networks, where knowledge of the channel characteristics is fundamental to exploiting the full potential of multiple-input multiple-output (MIMO) systems. We designed a framework adopting a 5G New Radio convolutional neural network, called NR-CsiNet, with the aim of compressing the channel matrix experienced by the user at the receiver side and then reconstructing it at the transmitter side. In contrast to similar solutions, our framework is based on a 5G New Radio fully compliant simulator, thus implementing a channel generator based on the latest 3GPP 3-D channel model. Moreover, realistic 5G scenarios are considered by including multi-receiving antenna schemes and noisy downlink channel estimation. Simulations were carried out to analyze and compare the performance with current feedback reporting schemes, showing promising results for this approach from the point of view of the block error rate and throughput of the 5G data channel.

Implementation of Deep-Learning-Based CSI Feedback Reporting on 5G NR-Compliant Link-Level Simulator / Riviello, DANIEL GAETANO; Tuninato, Riccardo; Zimaglia, Elisa; Fantini, Roberto; Garello, Roberto. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 23:2(2023). [10.3390/s23020910]

Implementation of Deep-Learning-Based CSI Feedback Reporting on 5G NR-Compliant Link-Level Simulator

Daniel Gaetano Riviello;Riccardo Tuninato;Elisa Zimaglia;Roberto Garello
2023

Abstract

Advances in machine learning have widened the range of its applications in many fields. In particular, deep learning has attracted much interest for its ability to provide solutions where the derivation of a rigorous mathematical model of the problem is troublesome. Our interest was drawn to the application of deep learning for channel state information feedback reporting, a crucial problem in frequency division duplexing (FDD) 5G networks, where knowledge of the channel characteristics is fundamental to exploiting the full potential of multiple-input multiple-output (MIMO) systems. We designed a framework adopting a 5G New Radio convolutional neural network, called NR-CsiNet, with the aim of compressing the channel matrix experienced by the user at the receiver side and then reconstructing it at the transmitter side. In contrast to similar solutions, our framework is based on a 5G New Radio fully compliant simulator, thus implementing a channel generator based on the latest 3GPP 3-D channel model. Moreover, realistic 5G scenarios are considered by including multi-receiving antenna schemes and noisy downlink channel estimation. Simulations were carried out to analyze and compare the performance with current feedback reporting schemes, showing promising results for this approach from the point of view of the block error rate and throughput of the 5G data channel.
2023
File in questo prodotto:
File Dimensione Formato  
Garello-Implementation.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 814.48 kB
Formato Adobe PDF
814.48 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2975223