Size effects concern the anomalous scaling of relevant mechanical properties of materials and structures over a sufficiently wide dimensional range. In the last few years, thanks to technological advances, such effects have been experimentally detected also in the very high cycle fatigue (VHCF) tests. Research groups at Politecnico di Torino are very active in this field, observing size effects on fatigue strength, fatigue life and fatigue limit up to the VHCF regime for different metal alloys. In addition, different theoretical models have been put forward to explain these effects. In the present paper, two of them are introduced, respectively based on fractal geometry and statistical concepts. Furthermore, a comparison between the models and experimental results is provided. Both models are able to predict the decrement in the fatigue life and in the conventional fatigue limit.

Comparison between Fractal and Statistical Approaches to Model Size Effects in VHCF / Invernizzi, S; Paolino, D; Montagnoli, F; Tridello, A; Carpinteri, A. - In: METALS. - ISSN 2075-4701. - 12:9(2022), p. 1499. [10.3390/met12091499]

Comparison between Fractal and Statistical Approaches to Model Size Effects in VHCF

Invernizzi, S;Paolino, D;Montagnoli, F;Tridello, A;Carpinteri, A
2022

Abstract

Size effects concern the anomalous scaling of relevant mechanical properties of materials and structures over a sufficiently wide dimensional range. In the last few years, thanks to technological advances, such effects have been experimentally detected also in the very high cycle fatigue (VHCF) tests. Research groups at Politecnico di Torino are very active in this field, observing size effects on fatigue strength, fatigue life and fatigue limit up to the VHCF regime for different metal alloys. In addition, different theoretical models have been put forward to explain these effects. In the present paper, two of them are introduced, respectively based on fractal geometry and statistical concepts. Furthermore, a comparison between the models and experimental results is provided. Both models are able to predict the decrement in the fatigue life and in the conventional fatigue limit.
2022
File in questo prodotto:
File Dimensione Formato  
metals-12-01499-v2 (6).pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2975099