Background: Proximal optimization technique (POT) is a key step during left main (LM) bifurcation stenting. However, after crossover stenting, the ideal position of POT balloon is unclear. We sought to evaluate the biomechanical impact of different POT balloon positions during LM cross-over stenting procedure. Methods: We reconstructed the patient-specific LM bifurcation anatomy, using coronary computed tomography angiography data of 5 consecutive patients (3 males, mean age 66.3 ± 21.6 years) with complex LM bifurcation disease, defined as Medina 1,1,1, evaluated between 1st January 2018 to 1st June 2018 at our center. Finite element analyses were carried out to virtually perform the stenting procedure. POT was virtually performed in a mid (marker just at the carina cut plane), proximal (distal marker 1 mm before the carina) and distal (distal marker 1 mm after the carina) position in each investigated case. Final left circumflex obstruction (SBO%), strut malapposition, elliptical ratio and stent malapposition were evaluated. Results: The use of both proximal and distal POT resulted in a smaller LM diameter compared to the mid POT. SBO was significantly higher in both proximal and distal configurations compared to mid POT: 38.3 ± 5.1 and 29.3 ± 3.1 versus 18.3 ± 3.6%, respectively. Similarly stent malapposition was higher in both proximal and distal configurations compared to mid POT: 1.3 ± 0.4 and 0.82 ± 1.8 versus 0.78 ± 1.2, respectively. Conclusions: Mid POT offers the best results in terms of LCx opening maintaining slightly smaller but still acceptable LM and LAD diameters compared to alternative POT configuration.
Biomechanical Evaluation of Different Balloon Positions for Proximal Optimization Technique in Left Main Bifurcation Stenting / Rigatelli, G.; Zuin, M.; Chiastra, C.; Burzotta, F.. - In: CARDIOVASCULAR REVASCULARIZATION MEDICINE. - ISSN 1553-8389. - 21:12(2020), pp. 1533-1538. [10.1016/j.carrev.2020.05.028]
Biomechanical Evaluation of Different Balloon Positions for Proximal Optimization Technique in Left Main Bifurcation Stenting
Chiastra, C.;
2020
Abstract
Background: Proximal optimization technique (POT) is a key step during left main (LM) bifurcation stenting. However, after crossover stenting, the ideal position of POT balloon is unclear. We sought to evaluate the biomechanical impact of different POT balloon positions during LM cross-over stenting procedure. Methods: We reconstructed the patient-specific LM bifurcation anatomy, using coronary computed tomography angiography data of 5 consecutive patients (3 males, mean age 66.3 ± 21.6 years) with complex LM bifurcation disease, defined as Medina 1,1,1, evaluated between 1st January 2018 to 1st June 2018 at our center. Finite element analyses were carried out to virtually perform the stenting procedure. POT was virtually performed in a mid (marker just at the carina cut plane), proximal (distal marker 1 mm before the carina) and distal (distal marker 1 mm after the carina) position in each investigated case. Final left circumflex obstruction (SBO%), strut malapposition, elliptical ratio and stent malapposition were evaluated. Results: The use of both proximal and distal POT resulted in a smaller LM diameter compared to the mid POT. SBO was significantly higher in both proximal and distal configurations compared to mid POT: 38.3 ± 5.1 and 29.3 ± 3.1 versus 18.3 ± 3.6%, respectively. Similarly stent malapposition was higher in both proximal and distal configurations compared to mid POT: 1.3 ± 0.4 and 0.82 ± 1.8 versus 0.78 ± 1.2, respectively. Conclusions: Mid POT offers the best results in terms of LCx opening maintaining slightly smaller but still acceptable LM and LAD diameters compared to alternative POT configuration.File | Dimensione | Formato | |
---|---|---|---|
2020 Rigatelli - Biomechanical evaluation of different balloon positions for proximal optimization technique in left main bifurcation stenting.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
879.85 kB
Formato
Adobe PDF
|
879.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2974797