The tightening of diesel pollutant emission regulations has made Internal Combustion Engine (ICE) management through steady-state maps obsolete. To overcome the map’s scarce performance and efficiently manage the engine, control systems must cope with ICE transient operations, the coupling between its subsystem dynamics, and the tradeoff between different requirements. The work demonstrates the effectiveness of a reference generator that coordinates the air path and combustion control systems of a turbocharged heavy-duty diesel engine. The control system coordinator is based on neural networks and allows for following different engine-out Nitrogen Oxide (NOx) targets while satisfying the load request. The air path control system provides the global conditions for the correct functioning of the engine, targeting O2 concentration and pressure in the intake manifold. Through cooperation, the combustion control targets Brake Mean Effective Pressure (BMEP) and NOx to react to rapid changes in the engine operating state and compensates for the remaining deviations with respect to load and NOx targets. The reference generator and the two controller algorithms are suitable for real-time implementation on rapid-prototyping hardware. The performance overall was good, allowing the engine to follow different NOx targets with 150 ppm of deviation and to achieve an average BMEP error of 0.3 bar.

Development of a Model-Based Coordinated Air-Fuel Controller for a 3.0 dm3 Diesel Engine and Its Assessment through Model-in-the-Loop / Ventura, Loris; Finesso, Roberto; Malan, Stefano. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 16:2(2023), p. 907. [10.3390/en16020907]

Development of a Model-Based Coordinated Air-Fuel Controller for a 3.0 dm3 Diesel Engine and Its Assessment through Model-in-the-Loop

Ventura,Loris;Finesso,Roberto;Malan, Stefano
2023

Abstract

The tightening of diesel pollutant emission regulations has made Internal Combustion Engine (ICE) management through steady-state maps obsolete. To overcome the map’s scarce performance and efficiently manage the engine, control systems must cope with ICE transient operations, the coupling between its subsystem dynamics, and the tradeoff between different requirements. The work demonstrates the effectiveness of a reference generator that coordinates the air path and combustion control systems of a turbocharged heavy-duty diesel engine. The control system coordinator is based on neural networks and allows for following different engine-out Nitrogen Oxide (NOx) targets while satisfying the load request. The air path control system provides the global conditions for the correct functioning of the engine, targeting O2 concentration and pressure in the intake manifold. Through cooperation, the combustion control targets Brake Mean Effective Pressure (BMEP) and NOx to react to rapid changes in the engine operating state and compensates for the remaining deviations with respect to load and NOx targets. The reference generator and the two controller algorithms are suitable for real-time implementation on rapid-prototyping hardware. The performance overall was good, allowing the engine to follow different NOx targets with 150 ppm of deviation and to achieve an average BMEP error of 0.3 bar.
2023
File in questo prodotto:
File Dimensione Formato  
energies-16-00907.pdf

accesso aperto

Descrizione: versione pubblicata. La stessa scaricabile dal sito della rivista
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.19 MB
Formato Adobe PDF
3.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2974657