Silicon is amongst the most attractive anode materials for Li-ion batteries because of its high gravimetric and volumetric capacity; importantly, it is also abundant and cheap, thus sustainable. For a widespread practical deployment of Si-based electrodes, research efforts must focus on significant breakthroughs to addressing the major challenges related to their poor cycling stability. In this work, we focus on the electrolyte-electrode relationships to support the scientific community with a systematic overview of Si-based cell design strategies reporting a thorough electrochemical study of different room temperature ionic liquid (RTIL)-based electrolytes, which contain either lithium bis(fluorosulfonyl)imide (LiFSI) or lithium bis(trifluoromethylsulfonyl)imide (LiTFSI). Their galvanostatic cycling performance with mixed silicon/graphite/few-layer graphene electrodes are evaluated, with first cycle coulombic efficiency approaching 90% and areal capacity ≈2 mAh/cm2 in the limited cut-off range of 0.1–2 V vs. Li+/Li0. The investigation evidences the superior characteristics of the FSI-based RTILs with respect to the TFSI-based one, which is mostly associated with the superior SEI forming ability of FSI-based systems, even without the use of specific additives. In particular, the LiFSI-EMIFSI electrolyte composition shows the best performance in both Li-half cells and Li-ion cells in which the Si-based electrodes are coupled with 4V-class composite NMC-based cathodes.

An electrochemical compatibility investigation of RTIL-based electrolytes with Si-based anodes for advanced Li-ion batteries / Falco, M.; Lingua, G.; Destro, M.; Silvestri, L.; Meligrana, G.; Lin, R.; Fantini, S.; Maresca, G.; Paolone, A.; Brutti, S.; Appetecchi, G. B.; Elia, G. A.; Gerbaldi, C.. - In: MATERIALS TODAY SUSTAINABILITY. - ISSN 2589-2347. - ELETTRONICO. - 21:(2023), p. 100299. [10.1016/j.mtsust.2022.100299]

An electrochemical compatibility investigation of RTIL-based electrolytes with Si-based anodes for advanced Li-ion batteries

Falco, M.;Lingua, G.;Destro, M.;Meligrana, G.;Elia, G. A.;Gerbaldi, C.
2023

Abstract

Silicon is amongst the most attractive anode materials for Li-ion batteries because of its high gravimetric and volumetric capacity; importantly, it is also abundant and cheap, thus sustainable. For a widespread practical deployment of Si-based electrodes, research efforts must focus on significant breakthroughs to addressing the major challenges related to their poor cycling stability. In this work, we focus on the electrolyte-electrode relationships to support the scientific community with a systematic overview of Si-based cell design strategies reporting a thorough electrochemical study of different room temperature ionic liquid (RTIL)-based electrolytes, which contain either lithium bis(fluorosulfonyl)imide (LiFSI) or lithium bis(trifluoromethylsulfonyl)imide (LiTFSI). Their galvanostatic cycling performance with mixed silicon/graphite/few-layer graphene electrodes are evaluated, with first cycle coulombic efficiency approaching 90% and areal capacity ≈2 mAh/cm2 in the limited cut-off range of 0.1–2 V vs. Li+/Li0. The investigation evidences the superior characteristics of the FSI-based RTILs with respect to the TFSI-based one, which is mostly associated with the superior SEI forming ability of FSI-based systems, even without the use of specific additives. In particular, the LiFSI-EMIFSI electrolyte composition shows the best performance in both Li-half cells and Li-ion cells in which the Si-based electrodes are coupled with 4V-class composite NMC-based cathodes.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2589234722001919-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2974603