In this study, a new approach of the multivariate regression model has been applied to make a precise mathematical model to determine further drilling for the detailed iron exploration in the Koohbaba area, Northwest of Iran. Furthermore, to figure out the additional drilling locations, the ore length to the total core ratio for the drilled boreholes has been used based on the geophysical exploration dataset. Hence, different regression analyses including linear, cubic, and quadratic models have been applied. In this study, the ore length to the total core ratio of the chosen drilled boreholes has been considered as a dependent variable; besides, the outputs of the magnetic data using the UP10 (10m upward-continuation), RTP (reduction to the pole), and A.S. (analytic signal) techniques have been designated as independent variables. Based on probability value (p-value), coefficients of determination (R2 and R2_adj), and efficiency formula (EF), the fourth regression model has revealed the best results. The accuracy of the model has been confirmed by the defined ratio of boreholes and demonstrated by four additional drilled boreholes in the study area. Therefore, the results of the regression analysis are reasonable and can be used to determine the additional drilling for the detailed exploration.

Application of multivariate regression on magnetic data to determine further drilling site for iron exploration / Feizi, Faranak; Abbas Karbalaei-Ramezanali, Amir; Farhadi, Sasan. - In: OPEN GEOSCIENCES. - ISSN 2391-5447. - 13:1(2021), pp. 138-147. [10.1515/geo-2020-0165]

Application of multivariate regression on magnetic data to determine further drilling site for iron exploration

Sasan Farhadi
2021

Abstract

In this study, a new approach of the multivariate regression model has been applied to make a precise mathematical model to determine further drilling for the detailed iron exploration in the Koohbaba area, Northwest of Iran. Furthermore, to figure out the additional drilling locations, the ore length to the total core ratio for the drilled boreholes has been used based on the geophysical exploration dataset. Hence, different regression analyses including linear, cubic, and quadratic models have been applied. In this study, the ore length to the total core ratio of the chosen drilled boreholes has been considered as a dependent variable; besides, the outputs of the magnetic data using the UP10 (10m upward-continuation), RTP (reduction to the pole), and A.S. (analytic signal) techniques have been designated as independent variables. Based on probability value (p-value), coefficients of determination (R2 and R2_adj), and efficiency formula (EF), the fourth regression model has revealed the best results. The accuracy of the model has been confirmed by the defined ratio of boreholes and demonstrated by four additional drilled boreholes in the study area. Therefore, the results of the regression analysis are reasonable and can be used to determine the additional drilling for the detailed exploration.
2021
File in questo prodotto:
File Dimensione Formato  
10.1515_geo-2020-0165.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 5.06 MB
Formato Adobe PDF
5.06 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2974269