Background: A number of studies have previously demonstrated that "goodness of fit" is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain. Results: Here, we propose a novel robustness analysis that aims to determine the "common robustness" of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network. Conclusions: Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model. © 2010 Saithong et al.
Consistent Robustness Analysis (CRA) Identifies Biologically Relevant Properties of Regulatory Network Models / Saithong, T.; Painter, K. J.; Millar, A. J.. - In: PLOS ONE. - ISSN 1932-6203. - 5:12(2010), pp. 1-11. [10.1371/journal.pone.0015589]
Consistent Robustness Analysis (CRA) Identifies Biologically Relevant Properties of Regulatory Network Models
Painter K. J.;
2010
Abstract
Background: A number of studies have previously demonstrated that "goodness of fit" is insufficient in reliably classifying the credibility of a biological model. Robustness and/or sensitivity analysis is commonly employed as a secondary method for evaluating the suitability of a particular model. The results of such analyses invariably depend on the particular parameter set tested, yet many parameter values for biological models are uncertain. Results: Here, we propose a novel robustness analysis that aims to determine the "common robustness" of the model with multiple, biologically plausible parameter sets, rather than the local robustness for a particular parameter set. Our method is applied to two published models of the Arabidopsis circadian clock (the one-loop [1] and two-loop [2] models). The results reinforce current findings suggesting the greater reliability of the two-loop model and pinpoint the crucial role of TOC1 in the circadian network. Conclusions: Consistent Robustness Analysis can indicate both the relative plausibility of different models and also the critical components and processes controlling each model. © 2010 Saithong et al.File | Dimensione | Formato | |
---|---|---|---|
saithong2010b.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2974250