Movement of biological organisms is frequently initiated in response to a diffusible or otherwise transported signal, and in its simplest form this movement can be described by a diffusion equation with an advection term. In systems in which the signal is localized in space the question arises as to whether aggregation of a population of indirectly-interacting organisms, or localization of a single organism, is possible under suitable hypotheses on the transition rules and the production of a control species that modulates the transition rates. It has been shown [25] that continuum approximations of reinforced random walks show aggregation and even blowup, but the connections between solutions of the continuum equations and of the master equation for the corresponding lattice walk were not studied. Using variational techniques and the existence of a Lyapunov functional, we study these connections here for certain simplified versions of the model studied earlier. This is done by relating knowledge about the shape of the minimizers of a variational problem to the asymptotic spatial structure of the solution. © 2004 Cambridge University Press.

Aggregation under local reinforcement: From lattice to continuum / Horstmann, D.; Painter, K. J.; Othmer, H. G.. - In: EUROPEAN JOURNAL OF APPLIED MATHEMATICS. - ISSN 0956-7925. - 15:5(2004), pp. 545-576. [10.1017/S0956792504005571]

Aggregation under local reinforcement: From lattice to continuum

Painter K. J.;
2004

Abstract

Movement of biological organisms is frequently initiated in response to a diffusible or otherwise transported signal, and in its simplest form this movement can be described by a diffusion equation with an advection term. In systems in which the signal is localized in space the question arises as to whether aggregation of a population of indirectly-interacting organisms, or localization of a single organism, is possible under suitable hypotheses on the transition rules and the production of a control species that modulates the transition rates. It has been shown [25] that continuum approximations of reinforced random walks show aggregation and even blowup, but the connections between solutions of the continuum equations and of the master equation for the corresponding lattice walk were not studied. Using variational techniques and the existence of a Lyapunov functional, we study these connections here for certain simplified versions of the model studied earlier. This is done by relating knowledge about the shape of the minimizers of a variational problem to the asymptotic spatial structure of the solution. © 2004 Cambridge University Press.
File in questo prodotto:
File Dimensione Formato  
Horstmannetal2004published.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 314.65 kB
Formato Adobe PDF
314.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2974243