Prediction of geochemical concentration values is essential in mineral exploration as it plays a principal role in the economic section. In this paper, four regression machine learning (ML) algorithms, such as K neighbor regressor (KNN), support vector regressor (SVR), gradient boosting regressor (GBR), and random forest regressor (RFR), have been trained to build our proposed hybrid ML (HML) model. Three metric measurements, including the correlation coefficient, mean absolute error (MAE), and means squared error (MSE), have been selected for model prediction performance. The final prediction of Pb and Zn grades is achieved using the HML model as they outperformed other algorithms by inheriting the advantages of individual regression models. Although the introduced regression algorithms can solve problems as single, non-complex, and robust regression models, the hybrid techniques can be used for the ore grade estimation with better performance. The required data are gathered from in situ soil. The objective of the recent study is to use the ML model’s prediction to classify Pb and Zn anomalies by concentration-area fractal modeling in the study area. Based on this fractal model results, there are five geochemical populations for both cases. These elements’ main anomalous regions were correlated with mining activities and core drilling data. The results indicate that our method is promising for predicting the ore elemental distribution.

Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran / Farhadi, Sasan; Afzal, Peyman; Boveiri Konari, Mina; Daneshvar Saein, Lili; Sadeghi, Behnam. - In: MINERALS. - ISSN 2075-163X. - 12:6(2022), pp. 1-23. [10.3390/min12060689]

Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran

Sasan Farhadi;
2022

Abstract

Prediction of geochemical concentration values is essential in mineral exploration as it plays a principal role in the economic section. In this paper, four regression machine learning (ML) algorithms, such as K neighbor regressor (KNN), support vector regressor (SVR), gradient boosting regressor (GBR), and random forest regressor (RFR), have been trained to build our proposed hybrid ML (HML) model. Three metric measurements, including the correlation coefficient, mean absolute error (MAE), and means squared error (MSE), have been selected for model prediction performance. The final prediction of Pb and Zn grades is achieved using the HML model as they outperformed other algorithms by inheriting the advantages of individual regression models. Although the introduced regression algorithms can solve problems as single, non-complex, and robust regression models, the hybrid techniques can be used for the ore grade estimation with better performance. The required data are gathered from in situ soil. The objective of the recent study is to use the ML model’s prediction to classify Pb and Zn anomalies by concentration-area fractal modeling in the study area. Based on this fractal model results, there are five geochemical populations for both cases. These elements’ main anomalous regions were correlated with mining activities and core drilling data. The results indicate that our method is promising for predicting the ore elemental distribution.
2022
File in questo prodotto:
File Dimensione Formato  
minerals-12-00689-v2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2974008