In this work, the contrast source inversion method is combined with a finite element method to solve microwave imaging problems. The paper’s major contribution is the development of a novel contrast source variable discretization that leads to simplify the algorithm implementation and, at the same time, to improve the accuracy of the discretized quantities. Moreover, the imaging problem is recreated in a synthetic environment, where the antennas, and their corresponding coaxial port, are modeled. The implemented algorithm is applied to reconstruct the tissues’ dielectric properties inside the head for brain stroke microwave imaging. The proposed implementation is compared with the standard one to evaluate the impact of the variables’ discretization on the algorithm’s accuracy. Furthermore, the paper shows the obtained performances with the proposed and the standard implementations of the contrast source inversion method in the same realistic 3D scenario. The exploited numerical example shows that the proposed discretization can reach a better focus on the stroke region in comparison with the standard one. However, the variation is within a limited range of permittivity values, which is reflected in similar averages.

A Novel Discretization Procedure in the CSI-FEM Algorithm for Brain Stroke Microwave Imaging / Mariano, Valeria; Tobon Vasquez, Jorge A.; Vipiana, Francesca. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 23:(2023). [10.3390/s23010011]

A Novel Discretization Procedure in the CSI-FEM Algorithm for Brain Stroke Microwave Imaging

Valeria Mariano;Jorge A. Tobon Vasquez;Francesca Vipiana
2023

Abstract

In this work, the contrast source inversion method is combined with a finite element method to solve microwave imaging problems. The paper’s major contribution is the development of a novel contrast source variable discretization that leads to simplify the algorithm implementation and, at the same time, to improve the accuracy of the discretized quantities. Moreover, the imaging problem is recreated in a synthetic environment, where the antennas, and their corresponding coaxial port, are modeled. The implemented algorithm is applied to reconstruct the tissues’ dielectric properties inside the head for brain stroke microwave imaging. The proposed implementation is compared with the standard one to evaluate the impact of the variables’ discretization on the algorithm’s accuracy. Furthermore, the paper shows the obtained performances with the proposed and the standard implementations of the contrast source inversion method in the same realistic 3D scenario. The exploited numerical example shows that the proposed discretization can reach a better focus on the stroke region in comparison with the standard one. However, the variation is within a limited range of permittivity values, which is reflected in similar averages.
2023
File in questo prodotto:
File Dimensione Formato  
sensors-23-00011.pdf

accesso aperto

Descrizione: Post-print scaricato dal sito del giornale Sensors MDPI
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2974001