In this new era of space exploration, reusability and lower environmental impact are critical drivers in pursuing innovative solutions for access to space. One of these leading solutions is the Space Rider, a European reusable space plane with the ability to be both an “access to space” and a “return from space”. Following the lesson learned from the Intermediate eXperimental Vehicle (IXV) design and testing, the Space Rider will be equipped with a parafoil to enhance manoeuvrability during landing. Politecnico di Torino (PoliTO), in collaboration with Thales Alenia Space Italy (TAS-I), has developed an integrated tool to assess the landing performances of spaceplanes equipped with parafoils during conceptual design. The presented approach fuses sizing, dynamic models, guidance and control algorithms to provide a software suite for the rapid prototyping, sizing and performance assessment of spaceplanes’ parafoils. This paper details the implementation, mathematical background, validation and lessons learned behind the different software modules.
An Approach to the Preliminary Sizing and Performance Assessment of Spaceplanes’ Landing Parafoils / Rimani, Jasmine; Viola, Nicole; Saluzzi, Antonio. - In: AEROSPACE. - ISSN 2226-4310. - 9:12(2022), p. 823. [10.3390/aerospace9120823]
An Approach to the Preliminary Sizing and Performance Assessment of Spaceplanes’ Landing Parafoils
Jasmine Rimani;Nicole Viola;Antonio Saluzzi
2022
Abstract
In this new era of space exploration, reusability and lower environmental impact are critical drivers in pursuing innovative solutions for access to space. One of these leading solutions is the Space Rider, a European reusable space plane with the ability to be both an “access to space” and a “return from space”. Following the lesson learned from the Intermediate eXperimental Vehicle (IXV) design and testing, the Space Rider will be equipped with a parafoil to enhance manoeuvrability during landing. Politecnico di Torino (PoliTO), in collaboration with Thales Alenia Space Italy (TAS-I), has developed an integrated tool to assess the landing performances of spaceplanes equipped with parafoils during conceptual design. The presented approach fuses sizing, dynamic models, guidance and control algorithms to provide a software suite for the rapid prototyping, sizing and performance assessment of spaceplanes’ parafoils. This paper details the implementation, mathematical background, validation and lessons learned behind the different software modules.File | Dimensione | Formato | |
---|---|---|---|
aerospace-09-00823.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2973928