Understanding the role of operating condition on fouling development in membrane distillation (MD) is critical for the further optimization of MD technology. In this study, organic fouling development in MD was investigated varying the feed inlet temperature from 35 to 65 degrees C and the cross-flow velocity from 0.21 to 0.42 m/s. The fouling layer thickness was estimated at the end of each experiment non-invasively with optical coherence tomography. The set of experiments was mined to model the initial flux decline, the near-stable flux, and the final foulant thickness responses by central composite design, a useful response surface methodology (RSM) tool. The results indicated a linear increment of the fouling thickness by increasing the feed inlet temperatures. Overall, the feed inlet temperature governed both the initial flux decline and the fouling deposition. The benefits in water productivity obtained by increasing the feed temperature were always offset by higher fouling deposition. Higher cross-flow velocities showed a positive effect on the initial flux, which however translated in larger values of the initial flux decline rate. On the other hand, the higher shear stress contributed to a decrease of the final steadystate fouling layer thickness. The proposed approach was proven to be a valuable tool to assess the role of the operating conditions on fouling and process performance in MD.

Unraveling the role of feed temperature and cross-flow velocity on organic fouling in membrane distillation using response surface methodology / Ricceri, F; Blankert, B; Ghaffour, N; Vrouwenvelder, Js; Tiraferri, A; Fortunato, L. - In: DESALINATION. - ISSN 0011-9164. - 540:(2022), p. 115971. [10.1016/j.desal.2022.115971]

Unraveling the role of feed temperature and cross-flow velocity on organic fouling in membrane distillation using response surface methodology

Ricceri, F;Tiraferri, A;
2022

Abstract

Understanding the role of operating condition on fouling development in membrane distillation (MD) is critical for the further optimization of MD technology. In this study, organic fouling development in MD was investigated varying the feed inlet temperature from 35 to 65 degrees C and the cross-flow velocity from 0.21 to 0.42 m/s. The fouling layer thickness was estimated at the end of each experiment non-invasively with optical coherence tomography. The set of experiments was mined to model the initial flux decline, the near-stable flux, and the final foulant thickness responses by central composite design, a useful response surface methodology (RSM) tool. The results indicated a linear increment of the fouling thickness by increasing the feed inlet temperatures. Overall, the feed inlet temperature governed both the initial flux decline and the fouling deposition. The benefits in water productivity obtained by increasing the feed temperature were always offset by higher fouling deposition. Higher cross-flow velocities showed a positive effect on the initial flux, which however translated in larger values of the initial flux decline rate. On the other hand, the higher shear stress contributed to a decrease of the final steadystate fouling layer thickness. The proposed approach was proven to be a valuable tool to assess the role of the operating conditions on fouling and process performance in MD.
File in questo prodotto:
File Dimensione Formato  
Pre-print.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF Visualizza/Apri
1-s2.0-S001191642200426X-main.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 4.95 MB
Formato Adobe PDF
4.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973554