Cyber-physical systems and their smart components have a pervasive presence in all our daily activities. Unfortunately, identifying the potential threats and issues in these systems and selecting enough protection is challenging given that such environments combine human, physical and cyber aspects to the system design and implementation. Current threat models and analysis do not take into consideration all three aspects of the analyzed system, how they can introduce new vulnerabilities or protection measures to each other. In this work, we introduce a novel threat model for cyber-physical systems that combines the cyber, physical, and human aspects. Our model represents the system’s components relations and security properties by taking into consideration these three aspects. Together with the threat model we also propose a threat analysis method that allows understanding the security state of the system’s components. The threat model and the threat analysis have been implemented into an automatic tool, called TAMELESS, that automatically analyzes threats to the system, verifies its security properties, and generates a graphical representation, useful for security architects to identify the proper prevention/mitigation solutions. We show and prove the use of our threat model and analysis with three cases studies from different sectors

A hybrid threat model for smart systems / Valenza, F.; Karafili, E.; Steiner, R. V.; Lupu, E. C.. - In: IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING. - ISSN 1545-5971. - ELETTRONICO. - 20:5(2023), pp. 4403-4417. [10.1109/TDSC.2022.3213577]

A hybrid threat model for smart systems

Valenza F.;
2023

Abstract

Cyber-physical systems and their smart components have a pervasive presence in all our daily activities. Unfortunately, identifying the potential threats and issues in these systems and selecting enough protection is challenging given that such environments combine human, physical and cyber aspects to the system design and implementation. Current threat models and analysis do not take into consideration all three aspects of the analyzed system, how they can introduce new vulnerabilities or protection measures to each other. In this work, we introduce a novel threat model for cyber-physical systems that combines the cyber, physical, and human aspects. Our model represents the system’s components relations and security properties by taking into consideration these three aspects. Together with the threat model we also propose a threat analysis method that allows understanding the security state of the system’s components. The threat model and the threat analysis have been implemented into an automatic tool, called TAMELESS, that automatically analyzes threats to the system, verifies its security properties, and generates a graphical representation, useful for security architects to identify the proper prevention/mitigation solutions. We show and prove the use of our threat model and analysis with three cases studies from different sectors
File in questo prodotto:
File Dimensione Formato  
SECRIS_Hybrid_Threat_Report (10).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 4.65 MB
Formato Adobe PDF
4.65 MB Adobe PDF Visualizza/Apri
A_Hybrid_Threat_Model_for_Smart_Systems.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973345