In this work the utilization of the Ion Beam Induced Charge (IBIC) technique is explored to assess the resolution a 2 MeV Li + ion microbeam raster scanning a micrometer-sized FIB-machined hollows in a silicon photodiode. The analysis of the maps crossing the FIB machined structures evidenced a drop in charge collection efficiency across the perimeter of the hollows combined with a significant recovery of the signal amplitude at the center of the microstructures, thus forming a micrometer-sized feature which can be exploited to estimate the resolution of the probing beam. The results were interpreted according to numerical simulations based on the Shockley-Ramo-Gunn as originating from a FIB-induced surface space charge density. These results offered additional information with respect to what achievable by a confocal photocurrent microscopy analysis of the same device, due to the significantly shorter focal depth of the latter with respect to the probing ion beam. This study suggests the viability of an effective method to evaluate of the resolution of ion microbeams in processes and experiments, which could be beneficial in emerging fields (deterministic implantation, micro-radiobiology, ion lithography) demanding beam spot sizes below the micrometer scale.

An ion beam spot size monitor based on a nano-machined Si photodiode probed by means of the ion beam induced charge technique / Andrini, G; Hernandez, En; Provatas, G; Brajkovic, M; Crnjac, A; Tchernij, Sd; Forneris, J; Rigato, V; Campostrini, M; Siketic, Z; Jaksic, M; Vittone, E. - In: VACUUM. - ISSN 0042-207X. - STAMPA. - 205:(2022), p. 111392. [10.1016/j.vacuum.2022.111392]

An ion beam spot size monitor based on a nano-machined Si photodiode probed by means of the ion beam induced charge technique

Andrini, G;
2022

Abstract

In this work the utilization of the Ion Beam Induced Charge (IBIC) technique is explored to assess the resolution a 2 MeV Li + ion microbeam raster scanning a micrometer-sized FIB-machined hollows in a silicon photodiode. The analysis of the maps crossing the FIB machined structures evidenced a drop in charge collection efficiency across the perimeter of the hollows combined with a significant recovery of the signal amplitude at the center of the microstructures, thus forming a micrometer-sized feature which can be exploited to estimate the resolution of the probing beam. The results were interpreted according to numerical simulations based on the Shockley-Ramo-Gunn as originating from a FIB-induced surface space charge density. These results offered additional information with respect to what achievable by a confocal photocurrent microscopy analysis of the same device, due to the significantly shorter focal depth of the latter with respect to the probing ion beam. This study suggests the viability of an effective method to evaluate of the resolution of ion microbeams in processes and experiments, which could be beneficial in emerging fields (deterministic implantation, micro-radiobiology, ion lithography) demanding beam spot sizes below the micrometer scale.
2022
File in questo prodotto:
File Dimensione Formato  
Andrini-AnIon.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.37 MB
Formato Adobe PDF
4.37 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973225