We construct stable vector bundles on the space P ((SCn+1)-C-d) of symmetric forms of degree d in n + 1 variables which are equivariant for the action of SLn+1 (C) and admit an equivariant free resolution of length 2. For n = 1, we obtain new examples of stable vector bundles of rank d - 1 on P-d, which are moreover equivariant for SL2(C). The presentation matrix of these bundles attains Westwick's upper bound for the dimension of vector spaces of matrices of constant rank and fixed size.

A construction of equivariant bundles on the space of symmetric forms / Boralevi, A.; Faenzi, D.; Lella, P.. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 38:3(2022), pp. 761-782. [10.4171/RMI/1307]

A construction of equivariant bundles on the space of symmetric forms

Boralevi A.;Faenzi D.;Lella P.
2022

Abstract

We construct stable vector bundles on the space P ((SCn+1)-C-d) of symmetric forms of degree d in n + 1 variables which are equivariant for the action of SLn+1 (C) and admit an equivariant free resolution of length 2. For n = 1, we obtain new examples of stable vector bundles of rank d - 1 on P-d, which are moreover equivariant for SL2(C). The presentation matrix of these bundles attains Westwick's upper bound for the dimension of vector spaces of matrices of constant rank and fixed size.
File in questo prodotto:
File Dimensione Formato  
3-adp2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 549.94 kB
Formato Adobe PDF
549.94 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973168