Nanoparticle self-assembly is a robust and versatile strategy for the development of functional nanostructured materials, offering low-cost and scalable methods that can be fine-tuned for many different specific application. In this work, we demonstrate a pathway for the fabrication of tailorable quasi-two-dimensional lattices of gold nanoparticles to be used in Surface Enhanced Raman Scattering (SERS) detection of biomolecules. As a first step, nanoparticles are spread as a monolayer at the water/air interface, compressed to a target lateral density in a Langmuir–Blodgett technique, and transferred to a properly functionalized substrate surface. Once firmly adhered to the substrate, the lattice of nanoparticles can be directly used or be further processed using electroless gold deposition to let the nanoparticle grow thus tuning the plasmonic response and SERS enhancement. Compared to direct deposition or self-assembly methods, our protocol enables to obtain consistent results and much higher coverage of Au nanoparticles thanks to the active control of the surface pressure of the spread monolayer.
Tailoring plasmonic response by Langmuir–Blodgett gold nanoparticle templating for the fabrication of SERS substrates / Tahghighi, M.; Mannelli, I.; Janner, D.; Ignes-Mullol, J.. - In: APPLIED SURFACE SCIENCE. - ISSN 0169-4332. - ELETTRONICO. - 447:(2018), pp. 416-422. [10.1016/j.apsusc.2018.03.237]
Tailoring plasmonic response by Langmuir–Blodgett gold nanoparticle templating for the fabrication of SERS substrates
Janner D.;
2018
Abstract
Nanoparticle self-assembly is a robust and versatile strategy for the development of functional nanostructured materials, offering low-cost and scalable methods that can be fine-tuned for many different specific application. In this work, we demonstrate a pathway for the fabrication of tailorable quasi-two-dimensional lattices of gold nanoparticles to be used in Surface Enhanced Raman Scattering (SERS) detection of biomolecules. As a first step, nanoparticles are spread as a monolayer at the water/air interface, compressed to a target lateral density in a Langmuir–Blodgett technique, and transferred to a properly functionalized substrate surface. Once firmly adhered to the substrate, the lattice of nanoparticles can be directly used or be further processed using electroless gold deposition to let the nanoparticle grow thus tuning the plasmonic response and SERS enhancement. Compared to direct deposition or self-assembly methods, our protocol enables to obtain consistent results and much higher coverage of Au nanoparticles thanks to the active control of the surface pressure of the spread monolayer.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0169433218309346-main.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2973166