For the solution of 2D exterior Dirichlet Poisson problems, we propose the coupling of a Curved Virtual Element Method (CVEM) with a Boundary Element Method (BEM), by using decoupled approximation orders. We provide optimal convergence error estimates, in the energy and in the weaker L-2-norm, in which the CVEM and BEM contributions to the error are separated. This allows for taking advantage of the high order flexibility of the CVEM to retrieve an accurate discrete solution by using a low order BEM. The numerical results confirm the a priori estimates and show the effectiveness of the proposed approach.

CVEM-BEM Coupling with Decoupled Orders for 2D Exterior Poisson Problems / Desiderio, L; Falletta, S; Ferrari, M; Scuderi, L. - In: JOURNAL OF SCIENTIFIC COMPUTING. - ISSN 0885-7474. - 92:3(2022). [10.1007/s10915-022-01951-3]

CVEM-BEM Coupling with Decoupled Orders for 2D Exterior Poisson Problems

Desiderio, L;Falletta, S;Ferrari, M;Scuderi, L
2022

Abstract

For the solution of 2D exterior Dirichlet Poisson problems, we propose the coupling of a Curved Virtual Element Method (CVEM) with a Boundary Element Method (BEM), by using decoupled approximation orders. We provide optimal convergence error estimates, in the energy and in the weaker L-2-norm, in which the CVEM and BEM contributions to the error are separated. This allows for taking advantage of the high order flexibility of the CVEM to retrieve an accurate discrete solution by using a low order BEM. The numerical results confirm the a priori estimates and show the effectiveness of the proposed approach.
File in questo prodotto:
File Dimensione Formato  
jomp-s-21-00996-1_submitted.pdf

non disponibili

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
CVEM-BEM Coupling with Decoupled Orders for 2D Exterior Poisson Problems.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973150