The biologically-derived polymers polyhydroxyalkanoates (PHAs) are biodegradable and can be considered a valuable alternative to conventional fossil-based plastics. However, upstream and downstream processes for PHA production are characterized by high energy and chemical consumption and are not economically competitive with petroleum-based polymers. Aiming to improve both the environmental and economical sustainability of PHAs production, in this work, corn straw was used as raw material to obtain a mixture of fermentable sugars after microwave-assisted flash hydrolysis (2 min, 0.01 g/L, 50.7% yield). A mixed microbial culture enriched from dairy industry waste was used for fermentation in a shake flask, allowing us to achieve good poly(hydroxy-butyrate-co-hydroxy-valerate) yields (41.4%, after 72 h of fermentation). A scale-up in a stirred tank bioreactor (3 L) gave higher yields (76.3%, after 96 h), allowing in both cases to achieve a concentration of 0.42 g/L in the fermentation medium. The possibility of producing PHAs from agricultural waste using a mixed microbial culture from the food industry with enabling technologies could make the production of biopolymers more competitive.

From Agri-Food Wastes to Polyhydroxyalkanoates through a Sustainable Process / Verdini, Federico; Tabasso, Silvia; Mariatti, Francesco; Bosco, Francesca; Mollea, Chiara; Calcio Gaudino, Emanuela; Cirio, Alessio; Cravotto, Giancarlo. - In: FERMENTATION. - ISSN 2311-5637. - ELETTRONICO. - 8:10(2022), p. 556. [10.3390/fermentation8100556]

From Agri-Food Wastes to Polyhydroxyalkanoates through a Sustainable Process

Francesca Bosco;Chiara Mollea;
2022

Abstract

The biologically-derived polymers polyhydroxyalkanoates (PHAs) are biodegradable and can be considered a valuable alternative to conventional fossil-based plastics. However, upstream and downstream processes for PHA production are characterized by high energy and chemical consumption and are not economically competitive with petroleum-based polymers. Aiming to improve both the environmental and economical sustainability of PHAs production, in this work, corn straw was used as raw material to obtain a mixture of fermentable sugars after microwave-assisted flash hydrolysis (2 min, 0.01 g/L, 50.7% yield). A mixed microbial culture enriched from dairy industry waste was used for fermentation in a shake flask, allowing us to achieve good poly(hydroxy-butyrate-co-hydroxy-valerate) yields (41.4%, after 72 h of fermentation). A scale-up in a stirred tank bioreactor (3 L) gave higher yields (76.3%, after 96 h), allowing in both cases to achieve a concentration of 0.42 g/L in the fermentation medium. The possibility of producing PHAs from agricultural waste using a mixed microbial culture from the food industry with enabling technologies could make the production of biopolymers more competitive.
File in questo prodotto:
File Dimensione Formato  
fermentation-08-00556.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973115