Let S be a surface with pg(S) = 0 , q(S) = 1 and endowed with a very ample line bundle OS(h) such that h1(S, OS(h)) = 0. We show that such an S supports families of dimension p of pairwise non-isomorphic, indecomposable, Ulrich bundles for arbitrary large p. Moreover, we show that S supports stable Ulrich bundles of rank 2 if the genus of the general element in | h| is at least 2.

Ulrich bundles on non-special surfaces with pg= 0 and q= 1 / Casnati, Gianfranco. - In: REVISTA MATEMATICA COMPLUTENSE. - ISSN 1139-1138. - 32:(2019), pp. 559-574. [10.1007/s13163-017-0248-z]

Ulrich bundles on non-special surfaces with pg= 0 and q= 1

Casnati Gianfranco
2019

Abstract

Let S be a surface with pg(S) = 0 , q(S) = 1 and endowed with a very ample line bundle OS(h) such that h1(S, OS(h)) = 0. We show that such an S supports families of dimension p of pairwise non-isomorphic, indecomposable, Ulrich bundles for arbitrary large p. Moreover, we show that S supports stable Ulrich bundles of rank 2 if the genus of the general element in | h| is at least 2.
File in questo prodotto:
File Dimensione Formato  
Ulrich bundles on non-special surfaces with and.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 441.75 kB
Formato Adobe PDF
441.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973114