Let S be a surface with pg(S) = 0 , q(S) = 1 and endowed with a very ample line bundle OS(h) such that h1(S, OS(h)) = 0. We show that such an S supports families of dimension p of pairwise non-isomorphic, indecomposable, Ulrich bundles for arbitrary large p. Moreover, we show that S supports stable Ulrich bundles of rank 2 if the genus of the general element in | h| is at least 2.
Ulrich bundles on non-special surfaces with pg= 0 and q= 1 / Casnati, Gianfranco. - In: REVISTA MATEMATICA COMPLUTENSE. - ISSN 1139-1138. - 32:(2019), pp. 559-574. [10.1007/s13163-017-0248-z]
Ulrich bundles on non-special surfaces with pg= 0 and q= 1
Casnati Gianfranco
2019
Abstract
Let S be a surface with pg(S) = 0 , q(S) = 1 and endowed with a very ample line bundle OS(h) such that h1(S, OS(h)) = 0. We show that such an S supports families of dimension p of pairwise non-isomorphic, indecomposable, Ulrich bundles for arbitrary large p. Moreover, we show that S supports stable Ulrich bundles of rank 2 if the genus of the general element in | h| is at least 2.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ulrich bundles on non-special surfaces with and.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
441.75 kB
Formato
Adobe PDF
|
441.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11583/2973114