Let S be a surface with pg(S) = 0 , q(S) = 1 and endowed with a very ample line bundle OS(h) such that h1(S, OS(h)) = 0. We show that such an S supports families of dimension p of pairwise non-isomorphic, indecomposable, Ulrich bundles for arbitrary large p. Moreover, we show that S supports stable Ulrich bundles of rank 2 if the genus of the general element in | h| is at least 2.
Ulrich bundles on non-special surfaces with pg= 0 and q= 1 / Casnati, Gianfranco. - In: REVISTA MATEMATICA COMPLUTENSE. - ISSN 1139-1138. - 32:(2019), pp. 559-574. [10.1007/s13163-017-0248-z]
Ulrich bundles on non-special surfaces with pg= 0 and q= 1
Casnati Gianfranco
2019
Abstract
Let S be a surface with pg(S) = 0 , q(S) = 1 and endowed with a very ample line bundle OS(h) such that h1(S, OS(h)) = 0. We show that such an S supports families of dimension p of pairwise non-isomorphic, indecomposable, Ulrich bundles for arbitrary large p. Moreover, we show that S supports stable Ulrich bundles of rank 2 if the genus of the general element in | h| is at least 2.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
		
			| File | Dimensione | Formato | |
|---|---|---|---|
| Ulrich bundles on non-special surfaces with and.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										441.75 kB
									 
										Formato
										Adobe PDF
									 | 441.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
			        	
	
		
		
			
			Utilizza questo identificativo per citare o creare un link a questo documento: 
			    https://hdl.handle.net/11583/2973114
			
		
	
	
	
			      	