Wavelength-division multiplexing (WDM) has historically enabled the increase in the capacity of optical systems by progressively populating the existing optical bandwidth of erbium-doped fiber amplifiers (EDFAs) in the C-band. Nowadays, the number of channels—needed in optical systems—is approaching the maximum capacity of standard C-band EDFAs. As a result, the industry worked on novel approaches, such as the use of multicore fibers, the extension of the available spectrum of the C-band EDFAs, and the development of transmission systems covering C- and L-bands and beyond. In the context of continuous traffic growth, ultrawideband (UWB) WDM transmission systems appear as a promising technology to leverage the bandwidth of already deployed optical fiber infrastructure and sustain the traffic demand for the years to come. Since the pioneering demonstrations of UWB transmission a few years ago, long strides have been taken toward UWB technologies. In this review article, we discuss how the most recent advances in the design and fabrication of enabling devices, such as lasers, amplifiers, optical switches, and modulators, have improved the performance of UWB systems, paving the way to turn research demonstrations into future products. In addition, we also report on the advances in UWB optical fibers, such as the recently introduced nested antiresonant nodeless fibers (NANFs), whose future implementations could potentially provide up to 300-nm-wide bandwidth at less than 0.2 dB/km loss.
Devices and Fibers for Ultrawideband Optical Communications / Renaudier, J.; Napoli, A.; Ionescu, M.; Calo, C.; Fiol, G.; Mikhailov, V.; Forysiak, W.; Fontaine, N.; Poletti, F.; Poggiolini, P.. - In: PROCEEDINGS OF THE IEEE. - ISSN 0018-9219. - STAMPA. - 110:11(2022), pp. 1742-1759. [10.1109/JPROC.2022.3203215]
Devices and Fibers for Ultrawideband Optical Communications
Poggiolini P.
2022
Abstract
Wavelength-division multiplexing (WDM) has historically enabled the increase in the capacity of optical systems by progressively populating the existing optical bandwidth of erbium-doped fiber amplifiers (EDFAs) in the C-band. Nowadays, the number of channels—needed in optical systems—is approaching the maximum capacity of standard C-band EDFAs. As a result, the industry worked on novel approaches, such as the use of multicore fibers, the extension of the available spectrum of the C-band EDFAs, and the development of transmission systems covering C- and L-bands and beyond. In the context of continuous traffic growth, ultrawideband (UWB) WDM transmission systems appear as a promising technology to leverage the bandwidth of already deployed optical fiber infrastructure and sustain the traffic demand for the years to come. Since the pioneering demonstrations of UWB transmission a few years ago, long strides have been taken toward UWB technologies. In this review article, we discuss how the most recent advances in the design and fabrication of enabling devices, such as lasers, amplifiers, optical switches, and modulators, have improved the performance of UWB systems, paving the way to turn research demonstrations into future products. In addition, we also report on the advances in UWB optical fibers, such as the recently introduced nested antiresonant nodeless fibers (NANFs), whose future implementations could potentially provide up to 300-nm-wide bandwidth at less than 0.2 dB/km loss.File | Dimensione | Formato | |
---|---|---|---|
JPROC3203215.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
5.27 MB
Formato
Adobe PDF
|
5.27 MB | Adobe PDF | Visualizza/Apri |
Poggiolini-Devices.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.11 MB
Formato
Adobe PDF
|
3.11 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972995