To better understand the role of particle inertia on the heat transfer in the presence of a thermal inhomogeneity, Eulerian–Lagrangian direct numerical simulations (DNSs) have been carried out by using the point–particle model. By considering particles transported by a homogeneous and isotropic, statistically steady turbulent velocity field with a Taylor microscale Reynolds number from 37 to 124, we have investigated the role of particle inertia and thermal inertia in one- and two-way coupling collisionless regimes on the heat transfer between two regions at uniform temperature. A wide range of Stokes numbers, from 0.1 to 3 with a thermal Stokes-number-to-Stokes-number ratio equal to 0.5 to 4.43 has been simulated. It has been found that all moments always undergo a self-similar evolution in the interfacial region between the two uniform temperature zones, the thickness of which shows diffusive growth. We have determined that the maximum contribution of particles to the heat flux, relative to the convective heat transfer, is achieved at a Stokes number which increases with the ratio between thermal Stokes and Stokes number, approaching 1 for very large ratios. Furthermore, the maximum increases with the thermal Stokes-to-Stokes number ratio whereas it reduces for increasing Reynolds. In the two-way coupling regime, particle feedback tends to smooth temperature gradients by reducing the convective heat flux and to increase the particle turbulent heat flux, in particular at a high Stokes number. The impact of particle inertia reduces at very large Stokes numbers and at larger Reynolds numbers. The dependence of the Nusselt number on the relevant governing parameters is presented. The implications of these findings for turbulence modelling are also briefly discussed.

Heat Transfer in a Non-Isothermal Collisionless Turbulent Particle-Laden Flow / ZANDI POUR, HAMID REZA; Iovieno, Michele. - In: FLUIDS. - ISSN 2311-5521. - ELETTRONICO. - 7:11(2022), p. 345. [10.3390/fluids7110345]

Heat Transfer in a Non-Isothermal Collisionless Turbulent Particle-Laden Flow

Hamid Reza Zandi Pour;Michele Iovieno
2022

Abstract

To better understand the role of particle inertia on the heat transfer in the presence of a thermal inhomogeneity, Eulerian–Lagrangian direct numerical simulations (DNSs) have been carried out by using the point–particle model. By considering particles transported by a homogeneous and isotropic, statistically steady turbulent velocity field with a Taylor microscale Reynolds number from 37 to 124, we have investigated the role of particle inertia and thermal inertia in one- and two-way coupling collisionless regimes on the heat transfer between two regions at uniform temperature. A wide range of Stokes numbers, from 0.1 to 3 with a thermal Stokes-number-to-Stokes-number ratio equal to 0.5 to 4.43 has been simulated. It has been found that all moments always undergo a self-similar evolution in the interfacial region between the two uniform temperature zones, the thickness of which shows diffusive growth. We have determined that the maximum contribution of particles to the heat flux, relative to the convective heat transfer, is achieved at a Stokes number which increases with the ratio between thermal Stokes and Stokes number, approaching 1 for very large ratios. Furthermore, the maximum increases with the thermal Stokes-to-Stokes number ratio whereas it reduces for increasing Reynolds. In the two-way coupling regime, particle feedback tends to smooth temperature gradients by reducing the convective heat flux and to increase the particle turbulent heat flux, in particular at a high Stokes number. The impact of particle inertia reduces at very large Stokes numbers and at larger Reynolds numbers. The dependence of the Nusselt number on the relevant governing parameters is presented. The implications of these findings for turbulence modelling are also briefly discussed.
2022
File in questo prodotto:
File Dimensione Formato  
fluids-07-00345.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 17.68 MB
Formato Adobe PDF
17.68 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2972926