A single-step approach to rapidly convert low molecular weight polybutadienes into fine rubber crosslinked fibers and nonwoven mats without using any heat or solvent was described. This environmentally friendly method consisted in the electrospinning at room temperature of liquid polybutadiene and polybutadiene-graft-maleic anhydride polymers without any solvent; the flying jet was irradiated to trigger the in-situ curing of the forming fibers at ambient conditions, obtaining a good control over the fibrous morphology and enhancing the performance of the membranes. The kinetics of the photo-crosslinking reaction was studied through FT-IR spectroscopy. Liquid polybutadiene-graft-maleic anhydride polymers demonstrated a faster rate of photocuring, compared to neat polybutadienes. In order to further speed up the reaction, a thiol-based crosslinker and a photoinitiator were introduced into the formulations. The photo-induced crosslinking was more efficient as different reactions concomitantly took place: besides the thiol-ene crosslinking involving the multifunctional thiol crosslinker, the oxidation of the polybutadiene chains and the esterification of the maleic anhydride moieties occurred. Moreover, a polar additive was used to control the electrospinning process by lowering the viscosity and increasing the electrical conductivity. The structural, thermal and surface properties of the fabricated polybutadiene-based electrospun membranes were assessed. The membranes exhibited an excellent morphology stability, high insolubility, good thermal properties and a pronounced hydrophobic character.
Solvent-free electrospinning of liquid polybutadienes and their in-situ photocuring / Kianfar, P; Trieu, Hqn; Dalle Vacche, S; Tsantilis, L; Bongiovanni, R; Vitale, A. - In: EUROPEAN POLYMER JOURNAL. - ISSN 0014-3057. - ELETTRONICO. - 177:(2022), p. 111453. [10.1016/j.eurpolymj.2022.111453]
Solvent-free electrospinning of liquid polybutadienes and their in-situ photocuring
Kianfar, P;Dalle Vacche, S;Tsantilis, L;Bongiovanni, R;Vitale, A
2022
Abstract
A single-step approach to rapidly convert low molecular weight polybutadienes into fine rubber crosslinked fibers and nonwoven mats without using any heat or solvent was described. This environmentally friendly method consisted in the electrospinning at room temperature of liquid polybutadiene and polybutadiene-graft-maleic anhydride polymers without any solvent; the flying jet was irradiated to trigger the in-situ curing of the forming fibers at ambient conditions, obtaining a good control over the fibrous morphology and enhancing the performance of the membranes. The kinetics of the photo-crosslinking reaction was studied through FT-IR spectroscopy. Liquid polybutadiene-graft-maleic anhydride polymers demonstrated a faster rate of photocuring, compared to neat polybutadienes. In order to further speed up the reaction, a thiol-based crosslinker and a photoinitiator were introduced into the formulations. The photo-induced crosslinking was more efficient as different reactions concomitantly took place: besides the thiol-ene crosslinking involving the multifunctional thiol crosslinker, the oxidation of the polybutadiene chains and the esterification of the maleic anhydride moieties occurred. Moreover, a polar additive was used to control the electrospinning process by lowering the viscosity and increasing the electrical conductivity. The structural, thermal and surface properties of the fabricated polybutadiene-based electrospun membranes were assessed. The membranes exhibited an excellent morphology stability, high insolubility, good thermal properties and a pronounced hydrophobic character.File | Dimensione | Formato | |
---|---|---|---|
Kianfar_Eur Polym J_2022.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
5.39 MB
Formato
Adobe PDF
|
5.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
manuscript_pre-print.pdf
accesso aperto
Descrizione: Article
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972886