Modern intra-data center (IDC) interconnects leverage robust and low-cost intensity modulation (IM) and direct detection (DD) optical links, based on multimode fibers (MMFs) and vertical-cavity surface-emitting lasers (VCSELs). Current solutions, based on on-off keying (OOK) modulations, reach up to 25-50 Gbps per lane over nearly 100 meters. The actual target for IDCs is to increase VCSEL-MMF links capacity up to 100 Gbps, using PAM-4 on the same devices. To counteract the consequent linear and nonlinear distortions affecting the transmitted signals, an effective solution is to exploit digital signal processing (DSP). In this manuscript, we propose a novel method to optimize a nonlinear artificial neural network (ANN) digital pre-distorter (DPD), based on End-to-end (E2E) learning, that, trained jointly with a Feed-Forward Equalizer (FFE), fulfills physical amplitude constraints and handles different ratio between the sampling rates incurring along with an optical IM-DD system. We indeed propose an E2E ANN system operating simultaneously at different sampling frequencies. We moreover propose in our training method a substitution to the time-domain injection of the receiver noise in the system with an additive regularization term in the FFE gradient loss. We experimentally show the advantages of our proposed DPD comparing the bit error rate (BER) performance against the same scenario without DPD. We assess the gain in terms of Gross Bit Rate and Optical Path Loss (OPL), at given BER targets, for different fiber lengths.
A Multi-Rate Approach for Nonlinear Pre-Distortion Using End-to-End Deep Learning in IM-DD Systems / Minelli, Leonardo; Forghieri, Fabrizio; Nespola, Antonino; Straullu, Stefano; Gaudino, Roberto. - In: JOURNAL OF LIGHTWAVE TECHNOLOGY. - ISSN 0733-8724. - STAMPA. - 41:2(2023), pp. 420-431. [10.1109/JLT.2022.3216591]
A Multi-Rate Approach for Nonlinear Pre-Distortion Using End-to-End Deep Learning in IM-DD Systems
Minelli, Leonardo;Gaudino, Roberto
2023
Abstract
Modern intra-data center (IDC) interconnects leverage robust and low-cost intensity modulation (IM) and direct detection (DD) optical links, based on multimode fibers (MMFs) and vertical-cavity surface-emitting lasers (VCSELs). Current solutions, based on on-off keying (OOK) modulations, reach up to 25-50 Gbps per lane over nearly 100 meters. The actual target for IDCs is to increase VCSEL-MMF links capacity up to 100 Gbps, using PAM-4 on the same devices. To counteract the consequent linear and nonlinear distortions affecting the transmitted signals, an effective solution is to exploit digital signal processing (DSP). In this manuscript, we propose a novel method to optimize a nonlinear artificial neural network (ANN) digital pre-distorter (DPD), based on End-to-end (E2E) learning, that, trained jointly with a Feed-Forward Equalizer (FFE), fulfills physical amplitude constraints and handles different ratio between the sampling rates incurring along with an optical IM-DD system. We indeed propose an E2E ANN system operating simultaneously at different sampling frequencies. We moreover propose in our training method a substitution to the time-domain injection of the receiver noise in the system with an additive regularization term in the FFE gradient loss. We experimentally show the advantages of our proposed DPD comparing the bit error rate (BER) performance against the same scenario without DPD. We assess the gain in terms of Gross Bit Rate and Optical Path Loss (OPL), at given BER targets, for different fiber lengths.| File | Dimensione | Formato | |
|---|---|---|---|
| FINAL_VERSION.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										4.3 MB
									 
										Formato
										Adobe PDF
									 | 4.3 MB | Adobe PDF | Visualizza/Apri | 
| Minelli-AMulti-Rate.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										3.53 MB
									 
										Formato
										Adobe PDF
									 | 3.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972809
			
		
	
	
	
			      	