Physical and chemical parameters that mimic the physiological niche of the human body have an influence on stem cell fate by creating directional signals to cells. Micro/nano cell-patterned polydimethylsiloxane (PDMS) substrates, due to their ability to mimic the physiological niche, have been widely used in surface modification. Integration of other factors such as the biochemical coating on the surface can achieve more similar microenvironmental conditions and promote stem cell differentiation to the target cell line. Herein, we investigated the effect of physical topography, chemical functionalization by acid bone lysate (ABL) nanocoating, and the combined functionalization of the bone proteins' nanocoated surface and the topographically modified surface. We prepared four distinguishing surfaces: plain PDMS, physically modified PDMS by 3D cell topography patterning, chemically modified PDMS with bone protein nanocoating, and chemically modified nano 3D cell-imprinted PDMS by bone proteins (ABL). Characterization of extracted ABL was carried out by Bradford staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis, followed by the MTT assay for evaluation of cell viability on ABL-coated PDMS. Moreover, field emission scanning electron microscopy and profilometry were used for the determination of optimal coating thickness, and the appropriate coating concentration was identified and used in the study. The binding and retention of ABL to PDMS were confirmed by Fourier transform infrared spectroscopy and bicinchoninic acid assay. Sessile drop static water contact angle measurements on substrates showed that the combined chemical functionalization and nano 3D cell-imprinting on the PDMS surface improved surface wettability by 66% compared to plain PDMS. The results of ALP measurement, alizarin red S staining, immunofluorescence staining, and real-time PCR showed that the nano 3D cell-imprinted PDMS surface functionalized by extracted bone proteins, ABL, is able to guide the fate of adipose derived stem cellss toward osteogenic differentiation. Eventually, chemical modification of the cell-imprinted PDMS substrate by bone protein extraction not only improved the cell adhesion and proliferation but also contributed to the topographical effect itself and caused a significant synergistic influence on the process of osteogenic differentiation.

Bioactivation of 3D Cell-Imprinted Polydimethylsiloxane Surfaces by Bone Protein Nanocoating for Bone Tissue Engineering / Babaei, M.; Nasernejad, B.; Sharifikolouei, E.; Shokrgozar, M. A.; Bonakdar, S.. - In: ACS OMEGA. - ISSN 2470-1343. - ELETTRONICO. - 7:30(2022), pp. 26353-26367. [10.1021/acsomega.2c02206]

Bioactivation of 3D Cell-Imprinted Polydimethylsiloxane Surfaces by Bone Protein Nanocoating for Bone Tissue Engineering

Babaei M.;Sharifikolouei E.;
2022

Abstract

Physical and chemical parameters that mimic the physiological niche of the human body have an influence on stem cell fate by creating directional signals to cells. Micro/nano cell-patterned polydimethylsiloxane (PDMS) substrates, due to their ability to mimic the physiological niche, have been widely used in surface modification. Integration of other factors such as the biochemical coating on the surface can achieve more similar microenvironmental conditions and promote stem cell differentiation to the target cell line. Herein, we investigated the effect of physical topography, chemical functionalization by acid bone lysate (ABL) nanocoating, and the combined functionalization of the bone proteins' nanocoated surface and the topographically modified surface. We prepared four distinguishing surfaces: plain PDMS, physically modified PDMS by 3D cell topography patterning, chemically modified PDMS with bone protein nanocoating, and chemically modified nano 3D cell-imprinted PDMS by bone proteins (ABL). Characterization of extracted ABL was carried out by Bradford staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis, followed by the MTT assay for evaluation of cell viability on ABL-coated PDMS. Moreover, field emission scanning electron microscopy and profilometry were used for the determination of optimal coating thickness, and the appropriate coating concentration was identified and used in the study. The binding and retention of ABL to PDMS were confirmed by Fourier transform infrared spectroscopy and bicinchoninic acid assay. Sessile drop static water contact angle measurements on substrates showed that the combined chemical functionalization and nano 3D cell-imprinting on the PDMS surface improved surface wettability by 66% compared to plain PDMS. The results of ALP measurement, alizarin red S staining, immunofluorescence staining, and real-time PCR showed that the nano 3D cell-imprinted PDMS surface functionalized by extracted bone proteins, ABL, is able to guide the fate of adipose derived stem cellss toward osteogenic differentiation. Eventually, chemical modification of the cell-imprinted PDMS substrate by bone protein extraction not only improved the cell adhesion and proliferation but also contributed to the topographical effect itself and caused a significant synergistic influence on the process of osteogenic differentiation.
2022
File in questo prodotto:
File Dimensione Formato  
acsomega.2c02206.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 8.31 MB
Formato Adobe PDF
8.31 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2972795