The encoding of classical data in a physical support can be done up to some level of accuracy due to errors and the imperfection of the writing process. Moreover, some degradation of the stored data can happen over time because of physical or chemical instability of the system. Any readout strategy should take into account this natural degree of uncertainty and minimize its effect. An example are optical digital memories, where the information is encoded in two values of reflectance of a collection of cells. Quantum reading using entanglement, has been shown to enhances the readout of an ideal optical memory, where the two level are perfectly characterized. In this work, we analyse the case of imperfect construction of the memory and propose an optimized quantum sensing protocol to maximize the readout accuracy in presence of imprecise writing. The proposed strategy is feasible with current technology and is relatively robust to detection and optical losses. Beside optical memories, this work have implications for identification of pattern in biological system, in spectrophotometry, and whenever the information can be extracted from a transmission/reflection optical measurement.

Quantum Readout of Imperfect Classical Data / Ortolano, Giuseppe; Ruo-Berchera, Ivano. - In: SENSORS. - ISSN 1424-8220. - ELETTRONICO. - 22:6(2022), p. 2266. [10.3390/s22062266]

Quantum Readout of Imperfect Classical Data

Giuseppe Ortolano;
2022

Abstract

The encoding of classical data in a physical support can be done up to some level of accuracy due to errors and the imperfection of the writing process. Moreover, some degradation of the stored data can happen over time because of physical or chemical instability of the system. Any readout strategy should take into account this natural degree of uncertainty and minimize its effect. An example are optical digital memories, where the information is encoded in two values of reflectance of a collection of cells. Quantum reading using entanglement, has been shown to enhances the readout of an ideal optical memory, where the two level are perfectly characterized. In this work, we analyse the case of imperfect construction of the memory and propose an optimized quantum sensing protocol to maximize the readout accuracy in presence of imprecise writing. The proposed strategy is feasible with current technology and is relatively robust to detection and optical losses. Beside optical memories, this work have implications for identification of pattern in biological system, in spectrophotometry, and whenever the information can be extracted from a transmission/reflection optical measurement.
2022
File in questo prodotto:
File Dimensione Formato  
sensors-22-02266-v2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2972751