We present a convolutional neural network architecture for inverse Raman amplifier design. This model aims at finding the pump powers and wavelengths required for a target signal power evolution in both distance along the fiber and in frequency. Using the proposed framework, the prediction of the pump configuration required to achieve a target power profile is demonstrated numerically with high accuracy in C-band considering both counter-propagating and bidirectional pumping schemes. For a distributed Raman amplifier based on a 100 km single-mode fiber, a low mean set (0.51, 0.54, and 0.64 dB) and standard deviation set (0.62, 0.43, and 0.38 dB) of the maximum test error are obtained numerically employing two and three counter-, and four bidirectional propagating pumps, respectively.
Inverse design of a Raman amplifier in frequency and distance domains using convolutional neural networks / Soltani, M.; da Ros, F.; Carena, A.; Zibar, D.. - In: OPTICS LETTERS. - ISSN 0146-9592. - ELETTRONICO. - 46:11(2021), pp. 2650-2653. [10.1364/OL.422884]
Inverse design of a Raman amplifier in frequency and distance domains using convolutional neural networks
Carena A.;
2021
Abstract
We present a convolutional neural network architecture for inverse Raman amplifier design. This model aims at finding the pump powers and wavelengths required for a target signal power evolution in both distance along the fiber and in frequency. Using the proposed framework, the prediction of the pump configuration required to achieve a target power profile is demonstrated numerically with high accuracy in C-band considering both counter-propagating and bidirectional pumping schemes. For a distributed Raman amplifier based on a 100 km single-mode fiber, a low mean set (0.51, 0.54, and 0.64 dB) and standard deviation set (0.62, 0.43, and 0.38 dB) of the maximum test error are obtained numerically employing two and three counter-, and four bidirectional propagating pumps, respectively.File | Dimensione | Formato | |
---|---|---|---|
227_ol2021.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.75 MB
Formato
Adobe PDF
|
2.75 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
422884.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972735