We present a convolutional neural network architecture for inverse Raman amplifier design. This model aims at finding the pump powers and wavelengths required for a target signal power evolution in both distance along the fiber and in frequency. Using the proposed framework, the prediction of the pump configuration required to achieve a target power profile is demonstrated numerically with high accuracy in C-band considering both counter-propagating and bidirectional pumping schemes. For a distributed Raman amplifier based on a 100 km single-mode fiber, a low mean set (0.51, 0.54, and 0.64 dB) and standard deviation set (0.62, 0.43, and 0.38 dB) of the maximum test error are obtained numerically employing two and three counter-, and four bidirectional propagating pumps, respectively.

Inverse design of a Raman amplifier in frequency and distance domains using convolutional neural networks / Soltani, M.; da Ros, F.; Carena, A.; Zibar, D.. - In: OPTICS LETTERS. - ISSN 0146-9592. - ELETTRONICO. - 46:11(2021), pp. 2650-2653. [10.1364/OL.422884]

Inverse design of a Raman amplifier in frequency and distance domains using convolutional neural networks

Carena A.;
2021

Abstract

We present a convolutional neural network architecture for inverse Raman amplifier design. This model aims at finding the pump powers and wavelengths required for a target signal power evolution in both distance along the fiber and in frequency. Using the proposed framework, the prediction of the pump configuration required to achieve a target power profile is demonstrated numerically with high accuracy in C-band considering both counter-propagating and bidirectional pumping schemes. For a distributed Raman amplifier based on a 100 km single-mode fiber, a low mean set (0.51, 0.54, and 0.64 dB) and standard deviation set (0.62, 0.43, and 0.38 dB) of the maximum test error are obtained numerically employing two and three counter-, and four bidirectional propagating pumps, respectively.
2021
File in questo prodotto:
File Dimensione Formato  
227_ol2021.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
422884.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2972735