This paper describes in detail a novel manufacturing process for optical gratings suitable for use in the UV and soft X-ray regimes in a single-crystal diamond substrate based on highly focused swift heavy-ion irradiation. This type of grating is extensively used in light source facilities such as synchrotrons or free electron lasers, with ever-increasing demands in terms of thermal loads, depending on beamline operational parameters and architecture. The process proposed in this paper may be a future alternative to current manufacturing techniques, providing the advantage of being applicable to single-crystal diamond substrates, with their unique properties in terms of heat conductivity and radiation hardness. The paper summarizes the physical principle used for the grating patterns produced by swift heavy-ion irradiation and provides full details for the manufacturing process for a specific grating configuration, inspired in one of the beamlines at the ALBA synchrotron light source, while stressing the most challenging points for a potential implementation. Preliminary proof-of-concept experimental results are presented, showing the practical implementation of the methodology proposed herein.
Process design for the manufacturing of soft X-ray gratings in single-crystal diamond by high-energy heavy-ion irradiation / Garcia, G.; Martin, M.; Ynsa, M. D.; Torres-Costa, V.; Crespillo, M. L.; Tardio, M.; Olivares, J.; Bosia, F.; Pena-Rodriguez, O.; Nicolas, J.; Tallarida, M.. - In: THE EUROPEAN PHYSICAL JOURNAL PLUS. - ISSN 2190-5444. - ELETTRONICO. - 137:10(2022), p. 1157. [10.1140/epjp/s13360-022-03358-3]
Process design for the manufacturing of soft X-ray gratings in single-crystal diamond by high-energy heavy-ion irradiation
Bosia F.;
2022
Abstract
This paper describes in detail a novel manufacturing process for optical gratings suitable for use in the UV and soft X-ray regimes in a single-crystal diamond substrate based on highly focused swift heavy-ion irradiation. This type of grating is extensively used in light source facilities such as synchrotrons or free electron lasers, with ever-increasing demands in terms of thermal loads, depending on beamline operational parameters and architecture. The process proposed in this paper may be a future alternative to current manufacturing techniques, providing the advantage of being applicable to single-crystal diamond substrates, with their unique properties in terms of heat conductivity and radiation hardness. The paper summarizes the physical principle used for the grating patterns produced by swift heavy-ion irradiation and provides full details for the manufacturing process for a specific grating configuration, inspired in one of the beamlines at the ALBA synchrotron light source, while stressing the most challenging points for a potential implementation. Preliminary proof-of-concept experimental results are presented, showing the practical implementation of the methodology proposed herein.File | Dimensione | Formato | |
---|---|---|---|
2022_Garcia_EPJPlus.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972689