Projective vector fields are the infinitesimal transformations whose local flow preserves geodesics up to reparametrisation. In 1882, Sophus Lie posed the problem of describing 2-dimensional metrics admitting a non-trivial projective vector field, which was solved in recent years. In the present paper, we solve the analog of Lie's problem in dimension 3, for Riemannian metrics and, more generally, for Levi-Civita metrics of arbitrary signature.

3-dimensional Levi-Civita metrics with projective vector fields / Manno, Gianni; Vollmer, Andreas. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 163:(2022), pp. 473-517. [10.1016/j.matpur.2022.05.012]

3-dimensional Levi-Civita metrics with projective vector fields

Gianni Manno;Andreas Vollmer
2022

Abstract

Projective vector fields are the infinitesimal transformations whose local flow preserves geodesics up to reparametrisation. In 1882, Sophus Lie posed the problem of describing 2-dimensional metrics admitting a non-trivial projective vector field, which was solved in recent years. In the present paper, we solve the analog of Lie's problem in dimension 3, for Riemannian metrics and, more generally, for Levi-Civita metrics of arbitrary signature.
File in questo prodotto:
File Dimensione Formato  
2022_JMPA.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 761.44 kB
Formato Adobe PDF
761.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
LeviCivitaMetrics.pdf

Open Access dal 19/05/2024

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 671.68 kB
Formato Adobe PDF
671.68 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2972390