Projective vector fields are the infinitesimal transformations whose local flow preserves geodesics up to reparametrisation. In 1882, Sophus Lie posed the problem of describing 2-dimensional metrics admitting a non-trivial projective vector field, which was solved in recent years. In the present paper, we solve the analog of Lie's problem in dimension 3, for Riemannian metrics and, more generally, for Levi-Civita metrics of arbitrary signature.
3-dimensional Levi-Civita metrics with projective vector fields / Manno, Gianni; Vollmer, Andreas. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 163:(2022), pp. 473-517. [10.1016/j.matpur.2022.05.012]
3-dimensional Levi-Civita metrics with projective vector fields
Gianni Manno;Andreas Vollmer
2022
Abstract
Projective vector fields are the infinitesimal transformations whose local flow preserves geodesics up to reparametrisation. In 1882, Sophus Lie posed the problem of describing 2-dimensional metrics admitting a non-trivial projective vector field, which was solved in recent years. In the present paper, we solve the analog of Lie's problem in dimension 3, for Riemannian metrics and, more generally, for Levi-Civita metrics of arbitrary signature.File | Dimensione | Formato | |
---|---|---|---|
2022_JMPA.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
761.44 kB
Formato
Adobe PDF
|
761.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
LeviCivitaMetrics.pdf
Open Access dal 19/05/2024
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Creative commons
Dimensione
671.68 kB
Formato
Adobe PDF
|
671.68 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972390