We consider the discretization of elliptic boundary-value problems by variational physics-informed neural networks (VPINNs), in which test functions are continuous, piecewise linear functions on a triangulation of the domain. We define an a posteriori error estimator, made of a residual-type term, a loss-function term, and data oscillation terms. We prove that the estimator is both reliable and efficient in controlling the energy norm of the error between the exact and VPINN solutions. Numerical results are in excellent agreement with the theoretical predictions.

Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis / Berrone, Stefano; Canuto, Claudio; Pintore, Moreno. - In: ANNALI DELL'UNIVERSITÀ DI FERRARA. SEZIONE 7: SCIENZE MATEMATICHE. - ISSN 0430-3202. - ELETTRONICO. - 68:(2022), pp. 575-595. [10.1007/s11565-022-00441-6]

Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis

Stefano Berrone;Claudio Canuto;Moreno Pintore
2022

Abstract

We consider the discretization of elliptic boundary-value problems by variational physics-informed neural networks (VPINNs), in which test functions are continuous, piecewise linear functions on a triangulation of the domain. We define an a posteriori error estimator, made of a residual-type term, a loss-function term, and data oscillation terms. We prove that the estimator is both reliable and efficient in controlling the energy norm of the error between the exact and VPINN solutions. Numerical results are in excellent agreement with the theoretical predictions.
File in questo prodotto:
File Dimensione Formato  
VPINN_aPosteriori.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 451.59 kB
Formato Adobe PDF
451.59 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2972327