In this paper we explore the dynamics of a one-dimensional KellerSegel type model for chemotaxis incorporating a logistic cell growth term. We demonstrate the capacity of the model to self-organise into multiple cellular aggregations which, according to position in parameter space, either form a stationary pattern or undergo a sustained spatio-temporal sequence of merging (two aggregations coalesce) and emerging (a new aggregation appears). This spatio-temporal patterning can be further subdivided into either a time-periodic or time-irregular fashion. Numerical explorations into the latter indicate a positive Lyapunov exponent (sensitive dependence to initial conditions) together with a rich bifurcation structure. In particular, we find stationary patterns that bifurcate onto a path of periodic patterns which, prior to the onset of spatio-temporal irregularity, undergo a "periodic-doubling" sequence. Based on these results and comparisons with other systems, we argue that the spatio-temporal irregularity observed here describes a form of spatio-temporal chaos. We discuss briefly our results in the context of previous applications of chemotaxis models, including tumour invasion, embryonic development and ecology. © 2010 Elsevier B.V. All rights reserved.

Spatio-temporal chaos in a chemotaxis model / Painter, K. J.; Hillen, T.. - In: PHYSICA D-NONLINEAR PHENOMENA. - ISSN 0167-2789. - 240:4-5(2011), pp. 363-375. [10.1016/j.physd.2010.09.011]

Spatio-temporal chaos in a chemotaxis model

Painter K. J.;Hillen T.
2011

Abstract

In this paper we explore the dynamics of a one-dimensional KellerSegel type model for chemotaxis incorporating a logistic cell growth term. We demonstrate the capacity of the model to self-organise into multiple cellular aggregations which, according to position in parameter space, either form a stationary pattern or undergo a sustained spatio-temporal sequence of merging (two aggregations coalesce) and emerging (a new aggregation appears). This spatio-temporal patterning can be further subdivided into either a time-periodic or time-irregular fashion. Numerical explorations into the latter indicate a positive Lyapunov exponent (sensitive dependence to initial conditions) together with a rich bifurcation structure. In particular, we find stationary patterns that bifurcate onto a path of periodic patterns which, prior to the onset of spatio-temporal irregularity, undergo a "periodic-doubling" sequence. Based on these results and comparisons with other systems, we argue that the spatio-temporal irregularity observed here describes a form of spatio-temporal chaos. We discuss briefly our results in the context of previous applications of chemotaxis models, including tumour invasion, embryonic development and ecology. © 2010 Elsevier B.V. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
PainterHillen2011Preprint.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Creative commons
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2972286