The nonuniform growth of certain forms of cancer can present significant complications for their treatment, a particularly acute problem in gliomas. A number of experimental results have suggested that invasion is facilitated by the directed movement of cells along the aligned neural fibre tracts that form a large component of the white matter. Diffusion tensor imaging (DTI) provides a window for visualising this anisotropy and gaining insight on the potential invasive pathways. In this paper we develop a mesoscopic model for glioma invasion based on the individual migration pathways of invading cells along the fibre tracts. Via scaling we obtain a macroscopic model that allows us to explore the overall growth of a tumour. To connect DTI data to parameters in the macroscopic model we assume that directional guidance along fibre tracts is described by a bimodal von Mises-Fisher distribution (a normal distribution on a unit sphere) and parametrised according to the directionality and degree of anisotropy in the diffusion tensors. We demonstrate the results in a simple model for glioma growth, exploiting both synthetic and genuine DTI datasets to reveal the potentially crucial role of anisotropic structure on invasion. © 2013 Elsevier Ltd.
Mathematical modelling of glioma growth: The use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion / Painter, K. J.; Hillen, T.. - In: JOURNAL OF THEORETICAL BIOLOGY. - ISSN 0022-5193. - 323:(2013), pp. 25-39. [10.1016/j.jtbi.2013.01.014]
Mathematical modelling of glioma growth: The use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion
Painter K. J.;Hillen T.
2013
Abstract
The nonuniform growth of certain forms of cancer can present significant complications for their treatment, a particularly acute problem in gliomas. A number of experimental results have suggested that invasion is facilitated by the directed movement of cells along the aligned neural fibre tracts that form a large component of the white matter. Diffusion tensor imaging (DTI) provides a window for visualising this anisotropy and gaining insight on the potential invasive pathways. In this paper we develop a mesoscopic model for glioma invasion based on the individual migration pathways of invading cells along the fibre tracts. Via scaling we obtain a macroscopic model that allows us to explore the overall growth of a tumour. To connect DTI data to parameters in the macroscopic model we assume that directional guidance along fibre tracts is described by a bimodal von Mises-Fisher distribution (a normal distribution on a unit sphere) and parametrised according to the directionality and degree of anisotropy in the diffusion tensors. We demonstrate the results in a simple model for glioma growth, exploiting both synthetic and genuine DTI datasets to reveal the potentially crucial role of anisotropic structure on invasion. © 2013 Elsevier Ltd.File | Dimensione | Formato | |
---|---|---|---|
PainterHillen2013Preprint.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Creative commons
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972285