In multi-domain elastic optical networks with alien wavelengths, each domain needs to consider intradomain and interdomain alien traffic to estimate and guarantee the required quality of transmission (QoT) for each lightpath and perform provisioning operations. This paper experimentally demonstrates an alien wavelength performance monitoring technique and machine-learning-aided QoT estimation for lightpath provisioning of intradomain/interdomain traffic. Testbed experiments demonstrate modulation format recognition, QoT monitoring, and cognitive routing for a 160 Gbaud alien multi-wavelength lightpath. By using experimental training datasets from the testbed and an artificial neural network, we demonstrated an accurate optical-signal-to-noise ratio prediction with an accuracy of ∼95% when using 1200 data points.

Experimental demonstration of machine-learning-aided QoT estimation in multi-domain elastic optical networks with alien wavelengths / Proietti, R; Chen, X; Zhang, K; Liu, G; Shamsabardeh, M; Castro, A; Velasco, L; Zhu, Z; Yoo, S. J. B.. - In: JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING. - ISSN 1943-0620. - STAMPA. - 11:1(2019), pp. A1-A10. [10.1364/JOCN.11.0000A1]

Experimental demonstration of machine-learning-aided QoT estimation in multi-domain elastic optical networks with alien wavelengths

Proietti R;
2019

Abstract

In multi-domain elastic optical networks with alien wavelengths, each domain needs to consider intradomain and interdomain alien traffic to estimate and guarantee the required quality of transmission (QoT) for each lightpath and perform provisioning operations. This paper experimentally demonstrates an alien wavelength performance monitoring technique and machine-learning-aided QoT estimation for lightpath provisioning of intradomain/interdomain traffic. Testbed experiments demonstrate modulation format recognition, QoT monitoring, and cognitive routing for a 160 Gbaud alien multi-wavelength lightpath. By using experimental training datasets from the testbed and an artificial neural network, we demonstrated an accurate optical-signal-to-noise ratio prediction with an accuracy of ∼95% when using 1200 data points.
File in questo prodotto:
File Dimensione Formato  
jocn-11-1-A1.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
334736.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2972264