We propose and implement a hardware-efficient frequency offset estimator (FOE) optimized for 16- and 32-QAM coherent optical receivers with low hardware cost and high estimation accuracy. The proposed FOE combines a wide-range coarse estimator and a narrow-range highly accurate estimator in a feedforward architecture. We numerically and experimentally investigate the performance of the proposed estimator by using a field-programmable-logic-array (FPGA) based real-time coherent receiver. Compared with other state-of-the-art estimators in literature, the proposed method reduces over 40% of hardware utilizations while maintaining the same level of estimation accuracy in terms of mean-squared-error (MSE) and optical signal-to-noise ratio (OSNR) sensitivity. These results enable the development of next generation DSP circuit capable of supporting high capacity coherent optical communication link with advanced modulation formats.
Demonstration of a carrier frequency offset estimator for 16-/32-QAM coherent receivers: a hardware perspective / Liu, G; Zhang, K; Zhang, R; Proietti, R; Lu, H; Yoo, S. J. B.. - In: OPTICS EXPRESS. - ISSN 1094-4087. - ELETTRONICO. - 26:4(2018), pp. 4853-4862. [10.1364/OE.26.004853]
Demonstration of a carrier frequency offset estimator for 16-/32-QAM coherent receivers: a hardware perspective
Proietti R;
2018
Abstract
We propose and implement a hardware-efficient frequency offset estimator (FOE) optimized for 16- and 32-QAM coherent optical receivers with low hardware cost and high estimation accuracy. The proposed FOE combines a wide-range coarse estimator and a narrow-range highly accurate estimator in a feedforward architecture. We numerically and experimentally investigate the performance of the proposed estimator by using a field-programmable-logic-array (FPGA) based real-time coherent receiver. Compared with other state-of-the-art estimators in literature, the proposed method reduces over 40% of hardware utilizations while maintaining the same level of estimation accuracy in terms of mean-squared-error (MSE) and optical signal-to-noise ratio (OSNR) sensitivity. These results enable the development of next generation DSP circuit capable of supporting high capacity coherent optical communication link with advanced modulation formats.File | Dimensione | Formato | |
---|---|---|---|
oe-26-4-4853.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
2.89 MB
Formato
Adobe PDF
|
2.89 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972180