In inductor applications, different soft magnetic materials are used depending on the frequency range. Owing to powder metallurgy technology and to the increase in the implementation of innovative multifunctional materials, it is possible to find an alternative to the traditional magnetic materials of the inductance application sector. This study concerns a deep analysis related to soft magnetic composite materials. The insulating layer's effect is investigated to explore the applicability of such materials to the inductor sector. Four coatings systems are selected and two types of samples are prepared in the shape of a toroid and a rod, which are tested in different operating conditions. The rod inductors are also compared with a traditional one, based on soft ferrite materials. This work aims to integrate data coming from different measuring devices: the useful small-signal measurements of an RLC meter are completed by large-cycle data measured through a hysteresigraph. Different parameters are considered for the investigation: magnetic permeability (maximum and initial), iron losses at different induction peak values, and inductor quality factor are the most important. The obtained results prove that each analysis type is not fully reliable without the other in determining the coatings' effects on the SMC inductors' performance. In the end, it is demonstrated that SMC inductances can be successfully applied in a particular frequency range.
Effect of the Insulating Layer on the Properties of SMC Inductors / Poskovic, Emir; Franchini, Fausto; Ferraris, Luca. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 12:17(2022), p. 8756. [10.3390/app12178756]
Effect of the Insulating Layer on the Properties of SMC Inductors
Emir Pošković;Fausto Franchini;Luca Ferraris
2022
Abstract
In inductor applications, different soft magnetic materials are used depending on the frequency range. Owing to powder metallurgy technology and to the increase in the implementation of innovative multifunctional materials, it is possible to find an alternative to the traditional magnetic materials of the inductance application sector. This study concerns a deep analysis related to soft magnetic composite materials. The insulating layer's effect is investigated to explore the applicability of such materials to the inductor sector. Four coatings systems are selected and two types of samples are prepared in the shape of a toroid and a rod, which are tested in different operating conditions. The rod inductors are also compared with a traditional one, based on soft ferrite materials. This work aims to integrate data coming from different measuring devices: the useful small-signal measurements of an RLC meter are completed by large-cycle data measured through a hysteresigraph. Different parameters are considered for the investigation: magnetic permeability (maximum and initial), iron losses at different induction peak values, and inductor quality factor are the most important. The obtained results prove that each analysis type is not fully reliable without the other in determining the coatings' effects on the SMC inductors' performance. In the end, it is demonstrated that SMC inductances can be successfully applied in a particular frequency range.File | Dimensione | Formato | |
---|---|---|---|
applsci-12-08756.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
4.55 MB
Formato
Adobe PDF
|
4.55 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2972039