Remote areas usually do not have access to electricity from the national grid. The energy demand is often covered by diesel generators, resulting in high operating costs and significant environmental impacts. With reference to the case study of Ginostra (a village on a small island in the south of Italy), this paper analyses the environmental sustainability of an innovative solution based on Renewable Energy Sources (RES) integrated with a hybrid hydrogen-battery energy storage system. A comparative Life Cycle Assessment (LCA) has been carried out to evaluate if and to what extent the RES-based system could bring environmental improvements compared to the current diesel-based configuration. The results show that the impact of the RES-based system is less than 10% of that of the current diesel-based solution for almost all impact categories (climate change, ozone depletion, photochemical ozone formation, acidification, marine and terrestrial eutrophication and fossil resource use). The renewable solution has slightly higher values only for the following indicators: use of mineral and metal resources, water use and freshwater eutrophication. The climate change category accounts for 0.197 kg CO2 eq./kWh in the renewable scenario and 1.73 kg CO2 eq./kWh in the diesel-based scenario, which corresponds to a reduction in GHG emissions of 89%. By shifting to the RES-based solution, about 6570 t of CO2 equivalent can be saved in 25 years (lifetime of the plant). In conclusion, the hydrogen-battery system could provide a sustainable and reliable alternative for power supply in remote areas.

Life cycle assessment of a renewable energy system with hydrogen-battery storage for a remote off-grid community / Gandiglio, M.; Marocco, P.; Bianco, I.; Lovera, D.; Blengini, G. A.; Santarelli, M.. - In: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. - ISSN 0360-3199. - 47:77(2022), pp. 32822-32834. [10.1016/j.ijhydene.2022.07.199]

Life cycle assessment of a renewable energy system with hydrogen-battery storage for a remote off-grid community

M. Gandiglio;P. Marocco;I. Bianco;D. Lovera;G. A. Blengini;M. Santarelli
2022

Abstract

Remote areas usually do not have access to electricity from the national grid. The energy demand is often covered by diesel generators, resulting in high operating costs and significant environmental impacts. With reference to the case study of Ginostra (a village on a small island in the south of Italy), this paper analyses the environmental sustainability of an innovative solution based on Renewable Energy Sources (RES) integrated with a hybrid hydrogen-battery energy storage system. A comparative Life Cycle Assessment (LCA) has been carried out to evaluate if and to what extent the RES-based system could bring environmental improvements compared to the current diesel-based configuration. The results show that the impact of the RES-based system is less than 10% of that of the current diesel-based solution for almost all impact categories (climate change, ozone depletion, photochemical ozone formation, acidification, marine and terrestrial eutrophication and fossil resource use). The renewable solution has slightly higher values only for the following indicators: use of mineral and metal resources, water use and freshwater eutrophication. The climate change category accounts for 0.197 kg CO2 eq./kWh in the renewable scenario and 1.73 kg CO2 eq./kWh in the diesel-based scenario, which corresponds to a reduction in GHG emissions of 89%. By shifting to the RES-based solution, about 6570 t of CO2 equivalent can be saved in 25 years (lifetime of the plant). In conclusion, the hydrogen-battery system could provide a sustainable and reliable alternative for power supply in remote areas.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0360319922032505-main.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2971983